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Abstract
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1 Introduction

Continuous-time double auctions, which clear compatible trades instantaneously, have proved

successful in experimental settings and are widely used in financial markets. Recently, how-

ever, the high frequency of trade associated with continuous-time trading mechanisms has

come under scrutiny on the ground that they induce socially wasteful arms races into arbi-

trage technologies. Batch auctions – that is, uniform price auctions run at a fixed frequency

– have been proposed as a remedy (Budish et al., 2015). In response to this and other related

concerns, a number of major exchanges have abandoned the use of continuous-time market

mechanisms. For example, IEX, a US-based stock exchange, incorporated a delay of 350 mi-

croseconds into its mechanism to eliminate the speed advantages required for certain preda-

tory trading strategies (Lewis, 2014). Another case in point is Thomson Reuters Matching,

a major interbank electronic trading venue in the foreign exchange market, which abandoned

its continuous-time market mechanism by introducing a buffer time to de-emphasize speed,

with the buffer being triggered by trading behavior (Melton, 2017). Similar “speedbump”

trading mechanisms are currently under consideration at both the New York Stock Exchange

and the Chicago Stock Exchange (McCrank, 2017b,a).

While these developments show increased awareness of the importance of how markets

are cleared, they also highlight how little is known in general about the basic question of how,

and how often, markets should be cleared. Accumulating traders increases market thickness,

which is good insofar as it offers additional or more valuable opportunities to trade, but bad

to the extent that the reduced speed creates costly delay. To date, practitioners have received

little to no guidance from economics about the optimal design of market clearing mechanisms

and have, perhaps as a consequence, paid little attention to the economic tradeoffs that are

involved. For example, the transition from paper to computer-organized trading at the New

York Stock Exchange was exclusively driven by the programmer’s desire to execute trades

as fast as possible without any consideration of the tradeoff between speed and market

thickness. Likewise, the Native Vegetation Exchange (NVX) for Victoria, Australia, was

designed to execute compatible trades instantaneously, not on the grounds that this would

be optimal but because of computational complexity. Similarly, eBay’s clearing mechanism
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does not allow traders to accumulate, which, as documented by Hendricks and Sorensen

(2018), results in substantial welfare losses.

In this paper, we take the first step towards closing this gap. We derive the optimal

market clearing mechanism in a model with sequential arrival of buyers and sellers who

are privately informed about their values and costs. We show that the impossibility of

efficient, incentive compatible and individually rational trade with privately informed agents

is overcome provided the discount factor is sufficiently large. With binary types this occurs

as soon as it is optimal to store at least one trade. To the best of our knowledge, our paper

thus brings to light an important novel aspect to the debates pertaining to the efficiency

of secondary markets going back to, at least, Lerner (1944), Coase (1960), Vickrey (1961),

Hurwicz (1972), and Myerson and Satterthwaite (1983). While our results have a Coasian

flavour in that they show that the inefficiency of initial allocations can be resolved with an

appropriately designed dynamic market clearing mechanism, they also provide a strong basis,

and demonstrate the need, for market design: without the dynamic mechanism, inefficiencies

from the initial allocation cannot always be resolved.1,2 Furthermore, with binary types we

show that efficient trade is possible precisely when the efficient allocation can be implemented

using a posted price mechanism. Because of their simplicity, such mechanisms are also

independently appealing for practical purposes.3

For large discount factors and general discrete types we show that most welfare gains

from using dynamic mechanisms relative to instantaneous clearing are reaped by the simplest

1Both a similarity with and difference to Cramton et al. (1987) are worth noting here. Recall that
Cramton et al. show that in a static setup efficient reallocation via a centralized market mechanism is
possible when the initial ownership structure is sufficiently symmetric. We show that with an appropriately
designed market mechanism efficient reallocation is possible even with extreme initial ownership, provided
only impatience is not too severe. Common to both papers is that they make strong cases, implicitly or
explicitly, for market design. Neither in the setting of Cramton et al. nor in ours will non-intermediated
bilateral trade lead to efficiency in any degree of generality.

2There is an important difference between our possibility result and the recent literature on the
(im)possibility of efficient bilateral trade in repeated settings that started with Athey and Miller (2007);
see also the literature review below and Garrett (2016) for further references. In repeated settings, the
efficient policy does not vary with the discount factor. More patience merely means that the individual ra-
tionality constraints become more slack. In our setting, in contrast, it is precisely the change in the efficient
policy resulting from increases in the discount factor that renders efficient trade without a deficit possible.

3There is an interesting analogy to static settings. For the static bilateral trade setup with overlapping
supports, the impossibility theorem of Myerson and Satterthwaite (1983) holds. Consequently, posted prices
constrain social surplus while avoiding a deficit (Hagerty and Rogerson, 1987). If the supports do not overlap,
efficient trade is possible and can be implemented with posted prices. In the dynamic setting, storing one
trade has thus the same effects as have non-overlapping supports in the static setup.
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dynamic mechanism that clears at an optimally chosen, fixed frequency. We also show that,

for a sufficiently large discount factor, a profit-targeting exchange generates greater social

welfare gains than a welfare-targeting market maker that uses a less sophisticated form of

market clearing. This suggests that traders may prefer to trade via a large monopolist

exchange rather than via a periodic ex post efficient exchange that never stores any trades.

Moreover, we show that an ad valorem tax imposed on the profit of a profit-maximizing

market maker does not distort the market maker’s policy whereas a specific tax does. Thus,

our paper also sheds new light on the effects of different forms of transaction taxes which

featured prominently in policy debates following the Global Financial Crisis and are relevant

to other regulatory issues, for example artist remuneration for online content streaming4.

This paper relates, first and foremost, to the literature on mechanism and market design.

In particular, we apply the techniques developed by Myerson (1981) to a dynamic setting

with discrete types and two-sided private information. Static versions of this setup with

two-sided private information have previously been studied by, among others, Myerson and

Satterthwaite (1983), Baliga and Vohra (2003), and Loertscher and Marx (2017). We use

the notions of interim and period ex post incentive compatibility that were introduced and

first used by Bergemann and Välimäki (2010). Much of the recent literature on dynamic

mechanism design, including Athey and Miller (2007), Bergemann and Välimäki (2010),

Athey and Segal (2013), Pavan et al. (2014) and Skrzypacz and Toikka (2015), considers

settings in which a static population of agents receives private information over time. In

contrast, our paper considers a dynamic population of agents with persistent types. In

such setups, the current allocation decision determines the set of feasible allocations in

future periods and the designer faces the optimal timing problem of deciding when to run a

static mechanism. Recent contributions to this strand of literature include Parkes and Singh

(2003), Gershkov and Moldovanu (2010) and Board and Skrzypacz (2016). However, none

of the aforementioned papers explicitly address the optimal timing problem5 nor do they

consider varying degrees of sophistication of the mechanisms or compare welfare and profit

4In particular, some have advocated for artists being paid a fixed amount per song played and others
favouring a share of the streaming service’s revenue proportional to the time an artist’s songs are played.

5Recent papers that address the optimal timing problem in one-sided settings include Pai and Vohra
(2013), Mierendorff (2013) and Mierendorff (2016).
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maximization.6

Our paper is methodologically related to the recent literature on dynamic matching where

monetary transfers cannot be used to incentivize agents.7 For example, building on Ünver

(2010) and Anderson et al. (2017), Akbarpour et al. (2019) study efficiency in a dynamic

matching model in which exchange possibilities have a network structure. Most importantly,

our paper draws inspiration from the work of Baccara et al. (2016). Motivated by the problem

of matching children and parents in an adoption “market” they consider a dynamic, two-

sided matching problem. The efficient algorithm Baccara et al. derive is similar to the

optimal market clearing policy in our paper when we specialize the setup to binary types.

There are, however, crucial differences between our approach and that of Baccara et al.

(2016). We adhere to the standard assumption in the dynamic mechanism design literature

of geometric discounting8, whereas Baccara et al. assume each agent incurs a fixed per period

cost of delay. This captures a notion of agents’ aging, reducing and eventually eliminating

the gains from “trade”, which seems appropriate for the application at hand. In contrast,

our assumptions of geometric discounting and quasilinear payoffs permit the use of monetary

transfers to incentivize agents and allow us to study a broad range of questions that Baccara

et al. cannot address such as revenue maximization by the market maker, the possibility

of efficient trade without running a deficit, or implementation via price posting and the

equilibrium distribution of prices. Thus, while some elements such as the efficient allocation

rule with binary types are naturally similar, the analyzes Baccara et al. and we perform

shed light on fundamentally different questions and thereby complement each other.

Our paper also relates to the fundamental question about the (im)possibility of efficient

trade. Coase (1960) made the important point that policy debates about the (initial) alloca-

tion of property rights necessarily center around the question of transaction costs. Vickrey

(1961), Hurwicz (1972) and Myerson and Satterthwaite (1983) argued forcefully that private

information can be an insurmountable transaction cost while Cramton et al. (1987) pointed

6There is also a vast literature on intermediation in financial markets; see, for example, Mendelson (1982)
or Kelly and Yudovina (2016) and references therein.

7For a recent paper that exploits a connection between static mechanism design models and matching
with transfers, see Delacrétaz et al. (2019).

8See, for example, Athey and Miller (2007), Bergemann and Välimäki (2010), Athey and Segal (2013),
Pavan et al. (2014) and Skrzypacz and Toikka (2015).
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out that the answer to the question of whether efficient trade is possible depends on the initial

allocation of property rights. Milgrom (2017) provides persuasive arguments that complex-

ity may be an additional source of transaction costs impeding efficient (re)allocation.9 Our

paper contributes to this debate by pointing to the importance of dynamic aspects. In par-

ticular, when impatience is not too large, we show that efficiency is possible without running

a deficit. Yet, there is considerable scope for market design as the institutions that enable

efficiency may not arise spontaneously through quick trial and error processes.

The remainder of this paper is organized as follows. Section 2 introduces the model and

key concepts. In Section 3, we solve the mechanism design problem for a symmetric setup

with binary types and discuss key properties of the optimal mechanism. Section 4 analyzes

posted price mechanisms and relates these, among other things, via the efficient market

clearing policy to the (im)possibility of efficient trade. Section 5 compares the performance

of the optimal dynamic mechanism to two less sophisticated dynamic mechanisms and in-

stantaneous market clearing. Section 6 concludes. All proofs, generalizations and algorithms

are provided in the Appendix.

2 Model

In this section, we introduce the general setup, the designer’s mechanism design problem

and some basic results that follow from applying mechanism design theory.

2.1 General setup

We first introduce traders’ types and payoff functions and define the arrival process. We

then introduce the objective of the designer and define the mechanism design problem faced

by the designer.

We consider a discrete-time infinite horizon setup in which a market designer operates a

two-sided exchange. In each period t ∈ N a single buyer Bt and a single seller St arrive (see

Online Appendix D for generalizations of the arrival process).10 All agents and the designer

9There is also empirical evidence suggesting that private information and the no deficit constraint are
not the only sources of transaction costs. For example, Larsen (2018) shows that the bargaining outcomes
in wholesale used-car auctions are well below the second-best frontier.

10The assumption that arrival is pairwise is made only to simplify the exposition. It is almost without
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are risk neutral geometric discounters, with a common discount factor δ ∈ [0, 1). We assume

that all agents have quasilinear preferences and that each buyer demands at most one unit

and each seller has the capacity to produce at most one unit. We also assume that agents

can only trade via the designer’s platform and the value of agents’ outside option of not

participating is zero.

Assume that buyers draw their types independently from a discrete distribution F with

probability mass function f whose support is given by V := {v1, . . . , vn} with v1 < · · · < vn

for n ∈ N and that sellers draw their types independently from a discrete distribution G

with probability mass function g and support C := {c1, . . . , cm}, where c1 < · · · < cm for

m ∈ N. We will occasionally refer to v1 and cm as the least-efficient buyer and seller type,

respectively. The arrival process, δ and the distributions F and G are common knowledge

and arrivals are observable.

This setup has a number of advantages. Private information about values and costs makes

the price discovery problem associated with market making in two-sided settings non-trivial.

The assumption of independently distributed private types implies that the optimal Bayesian

mechanism provides a practical benchmark. For static settings, it is well-known that under

these assumptions inducing efficient trade by privately informed buyers and sellers is not

possible without running a deficit if, in addition, values and costs are distributed according to

absolutely continuous distribution functions with identical and compact supports.11 Besides

its obvious real-world appeal, the setting with private information has the benefit that it

neither presumes nor precludes efficiency.12 It also makes the problem of revenue generation

interesting in a plausible way. We depart from the standard Myersonian setup by assuming

discrete types to make the state space and model tractable. We will discuss how discreteness

affects the results as we go. Finally, geometric discounting is the natural assumption for

loss of generality as we show in detail in Online Appendix D.
11With correlated types, full surplus extraction and efficiency are possible using mechanisms à la Crémer

and McLean (1985, 1988), which are not very robust in a number of relevant dimensions including wealth
constraints; see, for example, Kosmopoulou and Williams (1998), and Börgers (2015). With interdependent
types, depending on fine details such as distributional assumptions, efficiency may be possible using more
elaborate mechanisms than direct, one-shot revelation mechanisms (Mezzetti, 2004).

12That private information is at times an insurmountable transaction cost has long been recognized;
see, for example, Vickrey (1961), Hurwicz (1972) and Myerson and Satterthwaite (1983). Therefore, private
information is one way of avoiding the “Coasian Irrelevance” (Che, 2006) associated with the Coase Theorem
(Coase, 1960; Stigler, 1966).
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dynamic mechanism design settings in which the designer has to incentivize agents to reveal

information and cares about revenue.

2.2 The mechanism design problem

The designer’s problem is to find an incentive compatible, individually rational mechanism

that maximizes her objective. Denoting by 〈Q,M〉 a direct, feasible mechanism that is

incentive compatible and individually rational in ways that will be explained shortly, we let

R(〈Q,M〉) and W (〈Q,M〉) denote, respectively, the expected discounted revenue and so-

cial welfare gain generated by the mechanism. In the tradition of Myerson and Satterthwaite

(1983) and Gresik and Satterthwaite (1989), we assume that the designer is interested in

constrained efficient mechanisms. These mechanisms maximize W subject to the constraint

of generating an expected revenue of at least R,13 as well as the appropriate incentive com-

patibility and individual rationality constraints. It is well known that the set of constrained

efficient mechanisms is the set of Bayesian optimal mechanisms that, for any given α ∈ [0, 1],

maximize the Ramsey objective

αR(〈Q,M〉) + (1− α)W (〈Q,M〉), (1)

where the maximum is taken over feasible, incentive compatible and individually rational

mechanisms. Notice that when α = 0 and α = 1, we obtain, respectively, the efficient and

profit-maximizing mechanism.

Incentive compatibility and individual rationality

We restrict ourselves to direct, truthful mechanisms. A direct mechanism 〈Q,M〉 consists

of an allocation rule Q = {Qt}t∈N and a payment rule M = {M t}t∈N. Let Ht := (V × C)t

be the set of histories of agents’ reports up to and including period t. The period t allocation

rule Qt : Ht → {0, 1}2t maps the period t history of agent reports ht to the set of period

t allocations, and similarly, the period t transfer rule M t : Ht → R2t maps this history to

the set of period t transfers. Because of the revelation principle, the restriction to direct

mechanisms is without loss of generality.

13Or, equivalently, maximize R subject to the constraint of generating expected welfare gains of at least
W .
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The Bayesian incentive compatibility constraints require that truthful reporting is a best

response for every agent, assuming that all other agents report truthfully. The interim indi-

vidual rationality constraints require that agents’ interim expected payoffs are non-negative.

Formally, for a given direct mechanism 〈Q,M〉, let q(θ̂) denote the discounted probability

of trade for an agent that arrives in a given period and reports θ̂. Similarly, let m(θ̂) denote

the expected payment made (received) by a buyer (seller) that arrives in this period and

reports θ̂. Then the Bayesian incentive compatibility (BIC) and individual rationality (IR)

constraints require that for all v ∈ V and c ∈ C,

v = arg max
θ̂∈V

{
vq(θ̂)−m(θ̂)

}
and c = arg max

θ̂∈C

{
m(θ̂)− cq(θ̂)

}
, (BIC)

and

vq(v)−m(v) ≥ 0 and m(c)− cq(c) ≥ 0. (IR)

BIC is equivalent to requiring that the expected discounted allocation for buyers in-

creases in their report and the expected discounted allocation for sellers decreases in their

report. For any α > 0,14 it is well known that individual rationality constraints bind for

the least-efficient types and that, for all other types, the incentive compatibility constraints

bind locally downward for buyers and locally upward for sellers; see, for example, Elkind

(2007). Below, when we speak of binding incentive compatibility and individual rationality

constraints, we will mean that the incentive compatibility constraints are locally downwards

(upwards) binding for buyers (sellers) and the individual rationality constraints are binding

for the least-efficient types.

In our setting, as we will show, alternative, stronger notions of incentive compatibility

that have been discussed in the literature are equivalent to (BIC).15 The interim incentive

compatibility constraints (i-IC) (see, for example, Bergemann and Välimäki, 2010) require

that truthful reporting is optimal for every period t agent and every history ht−1 ∈ Ht−1,

assuming all other agents report truthfully. Formally, let q(θ̂,ht−1) and m(θ̂,ht−1) denote

14When α = 0, there is an indeterminacy: whether the individual rationality constraints bind does not
affect the objective and because of the discrete type space, the allocation rule does not pin down payments.
By treating α = 0 as the limit of α → 0, this indeterminacy can be avoided because it implies that for a
given allocation rule, the incentive compatible transfers are revenue maximizing, which in turn implies that
the individual rationality constraints bind.

15That is, equivalent from the ex ante perspective of the designer; see Proposition 1.
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the discounted probability of trade and expected discounted payment, respectively, for an

agent that reports θ̂ at history ht−1. For every history ht−1 ∈ Ht−1, v ∈ V and c ∈ C, (i-IC)

then requires

v = arg max
θ̂∈V

{
vq(θ̂,ht−1)−m(θ̂,ht−1)

}
,

c = arg max
θ̂∈C

{
m(θ̂,ht−1)− cq(θ̂,ht−1)

}
.

(i-IC)

Similarly, (periodic) interim individual rationality constraints (i-IR) require that, for every

history ht−1 ∈ Ht−1, v ∈ V and c ∈ C,

vq(v,ht−1)−m(v,ht−1) ≥ 0 and m(c,ht−1)− cq(c,ht−1) ≥ 0. (i-IR)

Finally, periodic ex post incentive compatibility constraints (P-IC) require that truthful re-

porting is optimal for every period t agent and every history ht−1, regardless of the report

of the other period t agent, assuming that all other agents report truthfully. Formally, let

q(θ̂, ϑ,ht−1) and m(θ̂, ϑ,ht−1) denote the discounted probability of trade and expected dis-

counted payment, respectively, for an agent that reports θ̂ at history ht−1 when the other

period t agent reports ϑ. For every history ht−1 ∈ Ht−1, v ∈ V and c ∈ C, (P-IC) requires

v = arg max
θ̂∈V

{
vq(θ̂, c,ht−1)−m(θ̂, c,ht−1)

}
,

c = arg max
θ̂∈C

{
m(θ̂, v,ht−1)− cq(θ̂, v,ht−1)

}
.

(P-IC)

Similarly, periodic ex post individual rationality constraints (P-IR) require that, for every

history ht−1 ∈ Ht−1, v ∈ V and c ∈ C,

vq(v, c,ht−1)−m(v, c,ht−1) ≥ 0 and m(c, v,ht−1)− cq(c, v,ht−1) ≥ 0. (P-IR)

Feasibility Beyond individual rationality and incentive compatibility constraints, the de-

signer also has to respect physical feasibility constraints. While the problem of eliciting

information about agents’ types truthfully is a static problem because each agent has a

time-invariant type which only needs to be elicited upon the agent’s arrival, when dealing

with the dynamic aspects of the mechanism design problem, we need to distinguish agents

not only by their types but also by their time of arrival, which (because of the pairwise

arrival) coincides with their identity. With that in mind, given a period t history ht, we
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denote the respective period t allocations of buyer and seller i ∈ {1, . . . , t} as QBi
t (ht) and

QSi
t (ht). Similarly, MBi

t (ht) and MSi
t (ht) denote the respective expected payments from Bi

and to Si in period t given ht.

Feasibility requires that, for all t ∈ N and all ht ∈ Ht,

t∑
i=1

QBi
t (ht) ≤

t∑
i=1

QSi
t (ht) (2)

and, for all i ∈ {1, . . . , t},
t∑
j=i

QBi
j (hj) ≤ 1 and

t∑
j=i

QSi
j (hj) ≤ 1. (3)

Of course, (2) will hold with equality under an optimal mechanism.16

2.3 Mechanism design results

For i ∈ {1, . . . , n− 1} and j ∈ {2, . . . ,m}, the virtual type functions are

Φ(vi) = vi − (vi+1 − vi)
1− F (vi)

f(vi)
and Γ(cj) = cj + (cj − cj−1)

G(cj−1)

g(cj)
, (4)

while for i = n and j = 1, they are Φ(vn) = vn and Γ(c1) = c1. As pointed out by

Bulow and Roberts (1989), virtual values (virtual costs) have the interpretation of marginal

revenue (marginal cost) once one accounts for the agents’ private information, treating the

probability of trade as the quantity demanded (supplied).

We impose the regularity condition of Myerson (1981). That is, we require that Φ and Γ

are increasing. Some of our comparative statics results rely on a stronger dynamic regularity

condition. We say distributions F and G satisfy dynamic regularity if Φ and Γ are non-

decreasing and if, for i ∈ {1, . . . , n− 1} and j ∈ {2, . . . ,m},

Φ(vi+1)− Φ(vi) > vi+1 − vi and Γ(cj)− Γ(cj−1) > cj − cj−1 (5)

hold.17

16Observe that the feasibility constraints captured by (3) are exactly the same as those in a standard
assignment game. The additional constraint (2) accounts for the dynamic nature of the problem by making
sure that at no point in time aggregate demand exceeds aggregate supply. Note also that the irreversibility
of time implies that for any two histories ht and h′s with t < s such that ht = h′s, we have, for all i, j ≤ t,
QBi
j (hj) = QBi

j (h′j) and QSi
j (hj) = QSi

j (h′j).
17For example, uniform distributions satisfy dynamic regularity. With continuous distributions, dynamic

regularity simply amounts to assuming that the hazard rate f(v)/(1− F (v)) is increasing.
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For i ≤ t let vBi(ht) ∈ V and cSi(ht) ∈ C denote the types of buyer Bi and seller Si given

history ht ∈ Ht, respectively. Expected discounted social welfare gains under any direct,

truthful mechanism that implements the allocation rule Q is then given by

W (Q) =
∞∑
t=1

t∑
i=1

∑
ht∈Ht

δt−1
(
vBi(ht)Q

Bi
t (ht)− cSi(ht)QSi

t (ht)
)
P(H t = ht). (6)

The designer’s expected discounted profit under binding incentive compatibility and indi-

vidual rationality can be determined and expressed in terms of virtual types.

Proposition 1. Expected discounted profit under any direct mechanism with allocation rule

Q and (BIC) and (IR) binding is given by

R(Q) =
∞∑
t=1

t∑
i=1

∑
ht∈Ht

δt−1
(
Φ(vBi(ht))Q

Bi
t (ht)− Γ(cSi(ht))Q

Si
t (ht)

)
P(H t = ht). (7)

Furthermore, R(Q) given in (7) is also the expected discounted profit under any direct mech-

anism with allocation rule Q and (i-IC) and (i-IR) or (P-IC) and (P-IR) binding.

An immediate implication of this proposition is that the designer cannot increase her

payoff by concealing the history ht−1 ∈ Ht−1 from arriving period t agent. Using (6) and

(7), we can now rewrite the Ramsey objective (1), incorporating incentive compatibility and

individual rationality constraints, as

αR(Q) + (1− α)W (Q)

=
∞∑
t=1

t∑
i=1

∑
ht∈Ht

δt−1
(
Φα(vBi(ht))Q

Bi
t (ht)− Γα(cSi(ht))Q

Si
t (ht)

)
P(H t = ht), (8)

where, for α ∈ [0, 1], v ∈ V and c ∈ C,

Φα(v) := (1− α)v + αΦ(v) and Γα(c) := (1− α)c+ αΓ(c) (9)

are the weighted virtual types. The designer’s problem is now to determine the allocation rule

Qα that maximizes (8), subject to the appropriate incentive constraints. Using terminology

that is standard in mechanism design, we refer to the allocation rule Q0 and the mechanism

that implements it as efficient. For α > 0, we refer to the allocation rule Qα and the

corresponding mechanism as optimal.18

18For example, with private values the Vickrey (or second-price) auction is an efficient auction. In contrast,
the selling mechanism Myerson (1981) derived is called an optimal auction.

12



2.4 Symmetric binary types setup

For the remainder of the main body of the paper, with the exception of Proposition 6 in

Section 4, we specialize the setup to one with binary types, and symmetric distributions.

That is, we now assume V = {v, v} and C = {c, c}, normalize v = 1, v = ∆0, c = 0, and

c = 1 − ∆0 with ∆0 ∈ (0, 1/2), and we impose symmetric distributions by assuming that

Pr(c = c) = w = Pr(v = v). We refer to this as the symmetric binary type setting, with

symmetry pertaining to the type structure, the distributions, and the arrival. We refer to

buyers of type v and sellers of type c as efficient (and to buyers of type v and sellers of type

c as inefficient).

This symmetric binary setup simplifies considerably the exposition, and analysis. As it

turns out, little is lost in terms of general insight. We discuss along the way which results

generalize to the setup from Section 2.1 and in Online Appendix B we provide the relevant

generalizations. Further extensions can be found in Online Appendix D.

As δ → 1, the setup collapses to a static environment in which there is a continuum of

traders and p is the proportion of sellers of type v and buyers of type c. The Walrasian

equilibrium for this setup is illustrated in Figure 1. Our assumptions make sure that in the

static setup with a continuum of agents efficient buyers and sellers trade in the Walrasian

market and inefficient buyers and sellers remain inactive. These assumptions also imply that

bilateral trade between a high-value buyer and a high-cost seller (or a low-value buyer and a

low-cost seller) generates positive social surplus. Upon the arrival of a (v, c) pair or a (v, c)

pair, this induces the trade-off between reaping the (small) gains from trade now and waiting

in the hope of creating larger gains from trade in the future.

Note that, with binary types and symmetric distributions, the virtual types of the inef-

ficient types become

Φ(v) := v − w

1− w
(v − v) and Γ(c) := c+

w

1− w
(c− c), (10)

while Φ(v) = v and Γ(c) = c.19

19Observe also that, with binary types, Φ(v) > Φ(v) and Γ(c) < Γ(c) is always the case, eliminating any
need or scope to impose monotonicity of virtual type functions separately.
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Figure 1: In every period, a buyer-seller pair arrives. Buyers and sellers draw their values and
costs independently from the distributions {v, v} and {c, c}, respectively, with v > c > v > c,
probability w on v and on c and the common discount factor δ. For δ = 1, w is the Walrasian
quantity.

Given any α ∈ [0, 1], we let ∆α := Φα(v)− Γα(c) = Φα(v)− Γα(c). Observe that

∆α = ∆0 − α
w

1− w
(1−∆0) ≤ ∆0,

where the inequality is strict for α > 0.

With binary types, binding individual rationality and incentive compatibility constraints

implies m(v) = vq(v), m(c) = cq(c), vq(v) − m(v) = vq(v) − m(v) and m(c) − cq(c) =

m(c)− cq(c), giving

m(v) = v(q(v)− q(v)) + vq(v) and m(c) = c(q(c)− q(c)) + cq(c). (11)

The incentive compatibility constraints for the worst-off types are satisfied if and only if

q(v) ≥ q(v) and q(c) ≥ q(c).

3 Optimal mechanisms in the symmetric binary setup

We now derive the allocation rule Qα that point by point maximizes (8) as implied by

incentive compatibility and individual rationality, temporarily neglecting the constraint that

this rule be incentive compatible. Then we verify that the pointwise maximizer permits

incentive compatible implementation. In contrast to standard, static mechanism design
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settings, where the pointwise maximizer is typically trivial, in our setting substantial work

goes into its derivation.

3.1 The optimal allocation rule

We begin with two elementary but useful observations. First, notice that ∆α < 0 is equivalent

to the designer wanting to induce trade only between efficient buyers and sellers. Conse-

quently, for ∆α < 0, the optimal allocation rule induces trade if and only if the buyer has

value v and a the seller’s cost is c.20 For remainder of the derivation of the optimal allocation

rule, we therefore assume that the parameters α, p and ∆0 are such that

∆α > 0. (12)

Since ∆α ≤ ∆0 < 1/2, if pairs of agents that reported (v, c) and (v, c) are present, an

increase in the designer’s payoff is achieved by rematching these pairs to create a (v, c) pair

that generates a gain of 1 rather than 2∆α.

Second, as the designer’s problem is to determine which pairs should be cleared from the

market in each period, when a pair that reported (v, c) or (v, c) is present, the designer has

an incentive to wait (rather than clear the market) in the hope of eventually rematching

pairs to create a (v, c) trade. In principle, this decision depends on the entire history of

agent reports. However, as shown below, the state space can be simplified considerably. We

make use of the fact that the relaxed optimization problem can be rewritten in terms of

a Markov decision process. In Online Appendix B we provide a general description of the

Markov decision process methodology developed in this paper.

We call a (v, c) pair efficient, the pairs (v, c) and (v, c) suboptimal and a (v, c) pair

inefficient. The underlying state at time t is identified as follows. We first determine the

number of efficient pairs present and then determine the number of identical suboptimal (v, c)

or (v, c) pairs present among the remaining set of agents. Our observations above imply that

it cannot be optimal that non-identical suboptimal pairs, (v, c) and (v, c), are simultaneously

present as these pairs can be split and rematched to form one efficient pair and one inefficient

pair. Inefficient pairs can be ignored since these do not generate positive surplus and cannot

20This also makes the incentive problem trivial: Buyers can simply be asked to pay v if they trade and
sellers can be paid c if they trade.
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be rematched to create efficient pairs. Thus, the state space of the designer’s Markov decision

process is two-dimensional and given by X := {(xE, xS) : xE, xS ∈ Z≥0}, where xE and xS

are the number of efficient pairs and suboptimal pairs present, respectively. Let X t ∈ X

denote the state of the market after the arrival of period t agents.

We let Ax denote the set of actions available to the designer in state x, and A = ∪x∈XAx.

We have Ax = {(aE, aS) : aE, aS ∈ Z≥0, aE ≤ xE, aS ≤ xS}, where aE and aS denote the

respective number of efficient pairs and suboptimal pairs being cleared from the market. Let

At denote the action taken by the designer in period t ∈ N, and denote by

Pa(x,y) := P(X t+1 = y |X t = x,At = a)

the transition probability that, if the designer takes the action a in state x in period t, the

state in period t+ 1 will be y. For any action a = (aE, aS), we have

Pa(x, (xE − aE + 1, xS − aS)) = w2 and Pa(x, (xE − aE, xS − aS)) = (1− w)2.

If xS = 0 or aS = xS, a suboptimal pair arriving in period t + 1 cannot be rematched. We

have

Pa(x, (xE − aE, 1)) = 2w(1− w).

Otherwise, if an identical suboptimal pair arrives, it cannot be rematched and if a non-

identical suboptimal pair arrives, the efficient agents in each pair can be rematched to form

one efficient pair. Consequently, we have

Pa(x, (xE − aE, xS − aS + 1)) = Pa(x, (xE − aE + 1, xS − aS − 1)) = w(1− w).

We denote by

r(a) = aE + ∆αaS

the immediate reward when action a ∈ A is implemented.

Given a Markov decision process 〈X ,A, P, r, δ〉, a policy π : X → A is such that π(x) ∈

Ax specifies the action taken by the designer in state x. The optimal policy π∗ of this

Markov decision process maximizes the expected discounted reward earned by the designer,
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which by construction is given by (8). Thus, the designer’s relaxed optimization problem

reduces to determining the optimal policy π∗ of 〈X ,A, P, r, δ〉. Since the state space X is

countable, the feasible action sets Ax are finite for all states x and the reward function

is deterministic, a stationary deterministic optimal policy exists and is characterized by

the appropriate Bellman equation (see, for example, Theorem 6.2.6 and Theorem 6.2.10 of

Puterman (1994)).

3.2 Threshold policies and implementation

To determine the optimal policy we begin by defining a simple class of policies, which we

call threshold policies. Threshold policies immediately clear efficient pairs from the market.

Identical suboptimal pairs are stored up to a threshold τ ∈ N, and any additional suboptimal

pairs are cleared immediately from the market.

Definition 1. Given a threshold τ ∈ N, the associated threshold policy πτ of the Markov

decision process 〈X ,A, P, r, δ〉 is such that

πτ (xE, xS) = (xE, 0) if xS ≤ τ and πτ (xE, xS) = (xE, xS − τ) if xS > τ.

We now prove that the optimal market clearing policy is a threshold policy. This is

intuitive, given that the designer essentially faces a binary choice in each period21 and that

the arrival process is stationary. Threshold policies are analogous to policies induced by a

Gittins (1979) index, that apply to multi-armed bandit problems. Moreover, we show that

it can be implemented using a P-IC and P-IR mechanism.

Theorem 1. The optimal market clearing policy is a threshold policy that can be implemented

with a P-IC and P-IR mechanism.

We now briefly discuss uniqueness of the optimal allocation rule. Observe that the

allocation rule that implements the optimal market clearing policy π∗ is unique only up to

the treatment of (v, c) pairs (that is, whether they are cleared or kept in the order book)

and the identities of agents that are cleared from the market when more than one agent

21It is clearly optimal to immediately clear efficient pairs from the market so in each period the designer
simply has to decide whether to clear or store after the arrival of an identical suboptimal pair.
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Figure 2: The Markov chain over the number of stored suboptimal pairs induced by the
optimal policy π∗, where λ = w(1− w).

of a given type is present. Thus, in expressing the designer’s optimization problem as a

Markov decision process with a simple state space, we have shown that, given a market

clearing policy, the designer’s payoff does not vary with the treatment of individual agents.

It immediately follows that the designer can implement the optimal market clearing policy

using any queueing protocol over stored traders. For example, a first-come-first-served or

a last-come-first-served queueing protocol could be used.22 Note that since the queueing

protocol serves as a tie-breaking rule, we can restrict attention to deterministic queueing

protocols.

Corollary 1. Given an optimal market clearing policy, social welfare gains and the profit

of the designer are invariant to the treatment of inefficient pairs and the queueing protocol

selected by the designer.

Although Theorem 1 does not immediately allow us to identify the optimal market clear-

ing policy, it is useful because it allows us to restrict attention to a small class of market

clearing policies. This gives rise to a tractable dynamic programming approach, which we

use to characterize the optimal threshold τ ∗. In particular, each threshold policy πτ induces

a Markov chain {Yt}t∈N over {0, . . . , τ}, the number of identical suboptimal pairs stored in

the order book. As is illustrated in Figure 2, {Yt}t∈N is a finite birth-and-death process.

Computing the stationary distribution of this Markov chain is straightforward.

Proposition 2. The stationary distribution κ of the Markov chain {Yt}t∈N under the thresh-

22We will later see that this invariance does not hold if we restrict the flexibility with which the designer
sets transfers.
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old policy πτ is given by

κ0 =
1

2τ + 1
and κi =

2

2τ + 1
, ∀i ∈ {1, . . . , τ}.

The designer’s stationary expected per period payoff is given by

w2 +
2w(1− w)(∆α + τ)

2τ + 1
.

The expression for the expected per period payoff has a simple and intuitive explanation.

With probability w2 an efficient pair arrives and trades, creating a welfare gain of 1. With

probability 2w(1 − w) a suboptimal pair arrives and there are several possibilities. With

probability (1/2)(1− κ0) = τ/(2τ + 1) there is a positive number of stored suboptimal pairs

of the opposite kind. This arrival and the stored traders permit the creation of an efficient

pair that trades and adds a welfare gain of 1. With probability (1/2)κτ = 1/(2τ + 1), τ

suboptimal pairs of the same kind are stored, meaning that one suboptimal pair is cleared,

generating a gain of ∆α. In all other cases, the arriving suboptimal pair is stored and no

immediate reward is earned by the designer.

Next, take any y ∈ {0, 1, . . . , τ} and let V D
τ (y) denote the expected present value of

having y identical suboptimal pairs stored at the end of any period under the threshold

policy with threshold τ ∈ N. Any such policy is, for y ∈ {1, . . . , τ − 1}, characterized by the

Bellman equation

V D
τ (y) = δ

[
w2(1 + V D

τ (y)) + w(1− w)(1 + V D
τ (y − 1) + V D

τ (y + 1)) + (1− w)2V D
τ (y)

]
,

(13)

with boundary conditions

V D
τ (0) = δ

[
w2(1 + V D

τ (0)) + 2w(1− w)V D
τ (1) + (1− w)2V D

τ (0)
]

(14)

and

V D
τ (τ) = δ

[
w2(1 + V D

τ (τ)) + w(1− w)(1 + V D
τ (τ − 1) + ∆α + V D

τ (τ)) + (1− w)2V D
τ (τ)

]
.

The optimal threshold τ ∗ can be determined using the stopping condition

V D
τ∗ (τ

∗) > ∆α + V D
τ∗ (τ

∗ − 1) and V D
τ∗+1(τ ∗ + 1) ≤ ∆α + V D

τ∗+1(τ ∗). (15)
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Figure 3: A numerical illustration of the comparative static results for τ ∗.

To compute the optimal threshold, one can start with the threshold policy given by τ =

1, check condition (15) and iterate. Algorithm C1 in Online Appendix C formalizes this

procedure.

Proposition 3. The optimal threshold τ ∗ is increasing in w(1− w) and decreasing in ∆0.

Intuitively, τ ∗ increases as the cost of storing traders decreases and so is decreasing in

∆α. Furthermore, the market maker stores suboptimal pairs in order to rematch them with

identical suboptimal pairs in future periods. Thus, τ ∗ is increasing in the probability of such

rematching, which, in a given period, is w(1−w). Of course, τ ∗ is a straightforward measure

of market thickness. These comparative statics are illustrated in Figure 3. Interestingly,

Proposition 3 has the following corollary.

Corollary 2. Market thickness, measured by τ ∗, is increasing in α.

Corollary 2 is reminiscent of Hotelling’s (1931) finding that a monopolist extracts an

exhaustible resource at a slower rate than a perfectly competitive industry.23 As is the case

23Corollary 2 does not necessarily extend to finite horizon models with richer type spaces. For example,
consider a two-period version of Myerson and Satterthwaite (1983) in which in every period a buyer-seller
pair arrives, with a common discount factor applied to period two and with each agent drawing her type
independently from a continuous distribution with compact support. Based on static mechanism design
intuition, one might expect the market designer to increase profit by restricting trade in each period. However,
this leads to a decrease in the probability that period one agents trade in period two, which reduces the
benefit of waiting in period one. Thus, in some cases it is optimal for the market designer to increase period
one trade to raise additional profit. See Loertscher et al. (2017)
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in static environments, these distortions arise under the optimal mechanism as a means of

reducing the informational rents of agents.24

Corollary 2 has important implications. In the perfectly patient limit (that is, as δ → 1),

which, as noted, is equivalent to a static setup with a continuum of traders, a trade is

executed if and only if it is efficient.25 Consequently, the outcome, illustrated in Figure 1 in

Section 2, is efficient and the average quantity traded per period (the Walrasian quantity) is

w. Therefore, in static setups, suboptimal trades are indicative of inefficiency and possibly

of rent extraction.26

However, the efficient outcome is different when δ < 1. Under the efficient policy (that

is, under πτ∗ for α = 0), a suboptimal trade takes place in a given period if and only if

a suboptimal pair arrives to a market in which τ ∗ identical suboptimal pairs are stored.

Thus, (v, c) and (v, c) trades take place in each period with probability w(1− w)/(2τ ∗ + 1)

as illustrated in Figure 4. Therefore, trades that are inefficient in a static setting are an

integral part of efficiency in a dynamic setting. Moreover, keeping fixed the discount factor,

by Corollary 2, the more such apparently inefficient suboptimal trades occur, the smaller is

the market maker’s rent extraction.

Another fundamental difference to static setups is that here efficiency is not a distribution-

free concept because the optimal mechanism depends on w.

How thin or thick are markets, optimally? Given that a lot of economics either

directly assumes perfectly thick markets or is at least based on the premise that perfectly

thick markets provide a good enough approximation, it is instructive to also briefly analyze

how thick or thin markets are, optimally. The following proposition provides such an upper

bound. Letting

τ(δ,∆α) =
log
(

1−∆α

∆α

)
1− δ

+
log
(

∆α

1−∆α

)
2

,

24Inefficiently few matches also take place under profit maximization in the dynamic matching model of
Fershtman and Pavan (2017).

25In the limit as δ → 1, there is no opportunity cost associated with storing suboptimal pairs and we must
have τ∗ →∞. In the limit, all efficient agents are eventually cleared from the market as part of an efficient
trade and inefficient agents trade with probability 0.

26For example, Yavaş (1996) investigates whether profit-seeking real estate brokers who earn a commission
per trade have an incentive to maximize the number of trades, which is achieved by exclusively inducing
suboptimal trades, rather than surplus.
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Figure 4: Efficiency for δ < 1.

we have:

Proposition 4. τ ∗ ≤ τ(δ,∆α) +O(1− δ).

Proposition 4 matters for two reasons. First, it shows that optimally market thickness

grows slowly (at rate 1/(1 − δ)) as δ → 1. From an economic perspective, this means that

markets are, optimally, rather thin. For example, for δ = 0.95 and ∆α = 0.4, we have

τ(δ,∆α) = 7.01. Even for δ = 0.99, we have τ(δ,∆α) = 39.45, meaning that it will not be

optimal to store more than 40 identical suboptimal pairs even when the discount factor is

so close to 1. Second, from a practical, or computational, perspective, the result matters

because it implies computational tractability.

3.3 Implications for indirect taxation

The effect of different forms of indirect taxes on economic outcomes is another question of

interest to economists, which has received renewed attention in the debates following the

Global Financial Crisis about alternative forms of transaction taxes for financial markets.

The question is also of relevance in policy debates pertaining to the remuneration scheme

for artists whose songs are played by online streaming services such as Spotify, Pandora, or

Apple, with some arguing that the platforms should be charged a fixed fee per song they

play, which roughly corresponds to a specific tax, and others arguing that the platforms
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should be charged a percentage of their revenue, which can be interpreted as an ad valorem

tax.

It is well known that, for perfectly competitive and thick markets, which in our setup

correspond to the limit case as δ → 1, specific and ad valorem taxes are equivalent. In

contrast, how these tax instruments compare in markets whose thickness is endogenously

determined is an open question. To answer it, we now assume that the market maker is a

profit maximizer and that authorities can observe and, under an ad valorem tax, tax the

market maker’s revenue.27 This is analogous to the standard assumption in oligopoly models

of indirect taxation that firms’ profits can be observed and taxed.28

Under a specific tax σ > 0 per unit traded, the value of an efficient trade decreases from

1 to 1 − σ while the value of a suboptimal trade decreases from ∆1 to ∆1 − σ. Given σ,

the optimal policy of the designer is thus the same as for the our original problem with ∆1

replaced by ∆(σ) = (∆1 − σ)/(1 − σ). Observe that ∆′ < 0 and ∆(0) = ∆1. Corollary 2,

with ∆α replaced by ∆(σ), thus implies that increasing σ will induce the market maker to

increase the threshold τ ∗. Thus, a specific tax distorts the relative value of suboptimal trades,

inducing the market maker to create an excessively thick market and further reducing the

welfare gains of buyers and sellers. When σ > ∆1, the market maker will become perfectly

patient and never execute a suboptimal trade.

In contrast, an ad valorem tax levied as a percentage on the market maker’s revenue will

not affect the relative value of a suboptimal trade. Thus, the market clearing policy employed

by the market maker will not change and an ad valorem tax can be levied without affecting

social welfare gains. Consequently, we conclude that ad valorem taxes are superior to specific

taxes in markets whose thickness is endogenously determined by a profit-maximizing market

maker.29

27We focus on profit-maximizing market makers in this subsection to simplify the analysis. Otherwise, we
would have to derive the optimal policies and mechanisms anew and impose an assumption as to how much
the market maker cares for tax revenue relative to social surplus and her own profit.

28This analysis extends directly to uniform and fixed frequency market clearing, which are introduced in
Section 5 below.

29Observe that the distorting effects of specific taxes vanish as δ approaches 1 because in the limit subop-
timal trades vanish.

23



3.4 General discrete type spaces

In Online Appendix B we show that the Markov decision process methodology is flexible and

can be used to analyze a wide variety of extensions. In particular, we construct the Markov

decision process for general discrete type spaces in 2.1 and prove appropriately generalized

versions of Theorem 1, Proposition 3 and Corollary 2 in Theorem B1, Proposition B1 and

Proposition B2 respectively. Note that our observations regarding indirect taxation also

apply to general discrete type spaces.

Finally, in Online Appendix D, we consider several generalizations of the arrival process,

including unpaired arrivals, continuous-time arrivals, group arrivals and multi-unit traders.

4 Posted prices

The optimal direct mechanism asks agents to report types and makes payments and alloca-

tions that depend, in general, on the reports of the contemporaneously arriving agents. In

practice, often simpler, indirect mechanisms are used such as posted prices, which motivates

us to examine this class of mechanisms. Doing so sheds new light on the possibility of effi-

cient trade and allows us to derive equilibrium price distributions. It also enables us to be

precise about the ways in which posted price mechanisms with a fixed spread are suboptimal

for a market maker who values profit. We begin with the following simple definition of a

posted price mechanism.

Definition 2. A posted price mechanism proceeds as follows. At the start of each period t,

the designer posts a price pB for buyers and a price pS for sellers as a function of the state

of the order book. The period t agents then arrive and all agents observe the order book and

the posted prices before making a report of ρ ∈ {0, 1/2, 1}, where 1 indicates that the agent

accepts the posted price, 0 indicates that the agent rejects the posted price and a report of

1/2 expresses that the agent is indifferent between accepting and rejecting the posted price.

The designer then clears the market at the posted prices on the basis of these reports. In the

event that there are ties, a queueing protocol specifies how these are broken.

According to our definition, a posted price mechanism is thus characterized by the pricing

rules pB and pS and the queueing protocol. We say that buyers (sellers) report truthfully
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under a posted price mechanism if they report ρ = 1 whenever v > pB (c < pS), ρ = 1/2

whenever v = pB (c = pS) and ρ = 0 whenever v < pB (c > pS). To analyze the incentive

properties of posted price mechanisms, we make the simplifying assumption that the designer

removes from the market any agent that makes reports that are not consistent with truthful

reporting for any type. Observe that under a truthful equilibrium, the designer can infer the

stored traders’ types.

4.1 An efficient budget balanced posted price mechanism

Consider now the following posted price mechanism, which we refer to as the balanced budget

posted price mechanism associated with a threshold τ ≥ 1, defined as follows: If the number

of suboptimal pairs stored in the order book is y < τ , the designer posts prices pB = pS = 1/2.

If the number of suboptimal pairs stored in the order book is y = τ , the designer posts

prices pB = pS = ∆0, provided the stored pairs are of the types (v, c), and the prices

pB = pS = 1−∆0 if the stored pairs are of the types (v, c). A last-come-first-served queueing

protocol is used to determine the order in which agents are cleared from the market and to

break ties if necessary.

By construction, the balanced budget posted price mechanism does not run a deficit.

In equilibrium, the mechanism immediately executes efficient trades and does not execute

any suboptimal trades when less than τ identical suboptimal pairs are stored. Once τ pairs

of type (v, c) are stored, the designer posts period t prices of pB = pS = 1 − ∆0, so that

any efficient or additional suboptimal trades created in period t are executed. Similarly,

once τ pairs of type (v, c) are stored, the designer posts period t prices of pB = pS = ∆0,

so that any efficient or additional suboptimal trades created in period t are executed (see

Figure 5). Therefore, under truthful reporting the balanced budget posted price mechanism

implements a threshold policy with threshold τ ≥ 1. When δ is equal to or close to 0, such

a mechanism is not efficient because for δ sufficiently small, the efficient policy executes all

trades that generate positive surplus. However, the downside to the efficient mechanism

when δ is small and no trades are stored is that, depending on the parametrization, it may

run a deficit.30 Interestingly, it turns out that there is a tight connection between the budget

30This static mechanism is readily derived. The individual rationality constraints for the inefficient traders
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Figure 5: Posted prices pB, pS such that pB = pS ∈ [c, v] will only clear efficient pairs from
the market. When τ ∗ of the (v, c) pairs are stored, a price increase to pB = pS ∈ [c, v] will
ensure that only efficient pairs and (v, c) pairs form the market. When τ ∗ of the (v, c) pairs
are stored, a price decrease to pB = pS ∈ [c, v] will ensure that only efficient pairs and (v, c)
pairs are cleared from the market. Thus, it is possible to implement the efficient market
clearing policy via a budget balanced posted price mechanism.

balanced posted price mechanism and the efficient allocation rule as stated in the following

proposition.

Proposition 5. The following statements are equivalent: (i) The efficient allocation rule

can be implemented using a P-IC and P-IR budget balanced posted price mechanism, and (ii)

τ ∗ > 0 for α = 0.

We now briefly develop the intuition behind this result. As discussed, the budget bal-

anced posted price mechanism implements the efficient allocation rule if τ ∗ > 0, provided

agents report truthfully. As such, we only need to check the agents’ incentive constraints.

For agents of type v and c, there is no incentive to misreport because these agents always

receive a payoff of zero when reporting truthfully (regardless of the history and the types of

contemporary agents) and cannot receive a positive expected discounted payoff by misreport-

are made binding by making interim expected payments for the buyer of type v equal to wv and the interim
expected payment to the seller of type c equal to wc. Bayesian incentive compatibility for the efficient types
then means that the buyer of type v pays no more than (1 − w)v + wv and the seller of type c is paid not
less than wc + (1 − w)c. Substituting v = 1 and c, the maximized expected revenue of the market maker,
subject to efficiency, incentive compatibility and individual rationality constraints, is thus w(2∆0−w), which
is negative for w > 2∆0.
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ing. Agents of type v will clearly report truthfully upon observing a price of ∆0. If a price

of 1/2 or 1 − ∆0 is observed, misreporting guarantees that the buyer will eventually leave

the market without trading (either immediately or later due to the last-come-first-served

queueing protocol) regardless of the history and the types of contemporary agents. Thus,

the incentive constraints are satisfied for buyers of type v. A similar argument applies to

sellers of type c.

Recall that in our discussion of the optimal mechanism we noted that, due to a version of

the revenue equivalence theorem, any queueing protocol can be used to break ties. However,

under a posted price mechanism, the choice of queueing protocol matters because we have

less flexibility in determining transfers.

We immediately have the following corollary to Proposition 5:

Corollary 3. The efficient mechanism does not run a deficit if τ ∗ > 0.

As noted in Footnote 30, any efficient, incentive compatible and individually rational

mechanism runs a deficit when δ = 0 if ∆0 < w/2. Proposition 5 thus sheds new light

on the impossibility of efficient trade along the lines of Myerson and Satterthwaite (1983)

for dynamic environments.31 Indeed, dynamics and optimally trading off gains from market

thickness against costs of delay offer a way of overcoming the impossibility of efficient trade.

On the surface, this is related to the strand of literature in the tradition of Gresik and

Satterthwaite (1989) that investigates how quickly inefficiency disappears as the number of

buyers and sellers increases in markets that are constrained not to run a deficit. However,

our result does not merely or primarily rely on a large markets argument. In our setting,

the deficit vanishes as soon as τ ∗ > 0, which occurs for δ = 0.36 for the parameters used

in Figure 3.32 Remarkably, the price posting implementation permits efficiency, not only

without running a deficit in expectation, but in fact with a balanced budget at all times.33

31The impossibility result of Myerson and Satterthwaite (1983) does not hold as generally for binary type
distributions as it does for continuous distributions. See Matsuo (1989) for a treatment of the bilateral
problem of Myerson and Satterthwaite (1983) with binary types and Kos and Manea (2009) for a version
with general discrete types.

32Given some value of δ, the expected (or discounted) number of pairs present in our setting would be
1/(1− δ). For δ in the order of 0.36 and ∆ = 0.1 and w = 0.5, the dynamic efficient mechanism does not run
a deficit (see Corollary 3 and Figure 3). Because 1/(1 − 0.36) ≈ 1.5, the expected number of pairs present
is less than 2. The parametrization w > 2∆0, which is sufficient to have a deficit in static, ex post efficient
bilateral trade (see footnote 30), is also sufficient for a deficit with N = 2 pairs present.

33As noted in the introduction (see in particular footnote 3), price posting and efficiency also go hand
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To see intuitively why implementation of the efficient allocation is possible whenever

τ ∗ ≥ 1, notice that an arriving inefficient agent trades upon arrival with non-zero probability

only if they are from a particular side of the market (inefficient agents trade only if they are

on the side of the market for which no efficient agents have accumulated). Thus, in each

period the designer knows a priori whether the buyer’s price must be sufficiently low so that

a v type may trade if necessary or the seller’s price must be sufficiently high so that a c

type may trade if necessary. This is also precisely why implementation using a posted price

mechanism with pB = pS is possible.

Proposition 5 uncovers a dynamic connection between two fundamental theorems in

economics: The Coase Theorem and the Myerson-Satterthwaite Theorem. The former states

that, absent transaction costs, efficient trade of resource poses no problem and the latter

that, in a static bilateral trade setting, private information poses an insurmountable obstacle

for efficient trade. Proposition 5 shows that efficient, budget-balanced trade is possible if

storing enough traders is efficient. Put differently, in our setup the Coase Theorem applies

if there is an appropriately designed dynamic market mechanism and agents are not too

impatient. Importantly, the main conclusion relies on dynamic regularity (as defined in (5))

and does not depend on the type space being binary, as shown in the following:

Proposition 6. Take any dynamically regular discrete type spaces such that, for δ = 0, any

ex post efficient, incentive compatible and individually rational mechanism runs a deficit.

Then there exists a sufficiently large value of δ that is less than 1 such that, under the

efficient mechanism that satisfies P-IC and P-IR, the designer’s expected discounted profit is

positive.

The result that the efficient mechanism can be implemented via price posting for δ < 1

does not easily generalize to richer type spaces. The analysis of Gresik and Satterthwaite

(1989) shows that, for continuous type spaces, the efficiency loss associated with the no-

deficit constraint only vanishes in the limit as δ → 1.

in hand in static bilateral trade problems. With independent, continuous distributions with overlapping
supports, Myerson and Satterthwaite (1983) prove the impossibility of ex post efficient trade subject to
incentive compatibility and individual rationality. Consequently, a posted price mechanism, while balancing
the budget, constrains social surplus. With non-overlapping supports, ex post efficiency is possible and can
be implemented with a posted price (for example, by setting the price equal to the mid-point between the
lower (upper) bound of support of the buyer’s (seller’s) distribution).
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Figure 6: The probability mass function of the posted price under the budget balanced
posted price mechanism for ∆0 = 0.2 implying Pt ∈ {0.2, 0.5, 0.8}.

4.2 Equilibrium price distribution

The implementation of the efficient policy, provided τ ∗ > 0, via the simple posted price

mechanism also enables us to characterize the stationary price distribution and to provide a

measure of market thickness, which we take to be an individual trader’s likely price impact.

We begin with the characterization of the steady state distribution. Let Pt denote the price

posted in period t. Under the stationary distribution, we have

P(Pt = v) = P(Pt = c) =
1

2τ ∗ + 1
and P(Pt = 1/2) =

2τ ∗ − 1

2τ ∗ + 1
, (16)

where the equalities in (16) follow from the stationary distribution given in Proposition 2.

An illustration of this distribution is given in Figure 6. It follows that the stationary variance

of the posted prices is

Var(Pt) =
2

2τ ∗ + 1

(
1

2
−∆0

)2

.

Based on these formulas, we now have the following corollary to Proposition 5:

Corollary 4. P(Pt = 1/2) increases in δ and w(1 − w) and decreases in ∆0. Var(Pt)

decreases in δ and w(1− w). Moreover,

lim
δ→1

P(Pt = 1/2) = 1 and lim
δ→1

Var(Pt) = 0.

The first part of the corollary says that the distribution shifts more weight to the static

Walrasian price as the discount factor increases and the probability of a contemporaneous
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mismatch (that is, w(1 − w)) increases. It decreases as the value of a suboptimal trade in-

creases because the optimal threshold τ ∗ decreases in this value. Likewise, the price variance

decreases in the discount factor and the probability of a mismatch. However, the effect of

the value of a suboptimal trade on the price variance cannot be signed in general because,

on the one hand, such increases shift probability mass to the extremes, thereby increasing

the variance when all else is equal, while on the other hand they narrow the gap between

the lowest price ∆0 and the highest price 1−∆0 in the support.

The limit results in the second part of Corollary 4 state that the equilibrium price distri-

bution converges to a degenerate distribution that has probability 1 on the static Walrasian

price of 1/2. This result resonates with classic convergence results in the literature on the

microfoundation of competitive equilibrium such as Satterthwaite and Shneyerov (2007) or

Lauermann (2013), which provide sufficient conditions for equilibrium in dynamic search

and matching settings to converge to the (static) Walrasian equilibrium as search frictions

(often also parametrized by a discount factor) vanish. However, there is a subtle but im-

portant difference: In the aforementioned papers, the equilibrium allocation is inefficient for

δ < 1 whereas in our setting, equilibrium behavior under the posted price mechanism is, by

construction of the mechanism, efficient for any δ, provided only it is large enough so that

τ ∗ > 0.

We now turn to the determination of an individual agent’s likely price impact, which can

be interpreted as a measure of market thickness. In so doing, we stipulate that an agent

arrives to an order book that is characterized by the stationary distribution in period t and

ask what is the probability that this agent’s truthful reporting changes the price from the

static Walrasian price of 1/2 to one of the two extremes (c for a buyer and v for a seller).

Notice that an agent only has a price impact, given pt−1 = 1/2, if the number of identical

suboptimal pairs in the order book is at the threshold value τ ∗ and if she is part of another,

identical suboptimal pair. Therefore, defined in this way, an agent’s likely price impact is

pim := P(Pt = v|pt−1 = 1/2) = P(Pt = c|pt−1 = 1/2) =
w(1− w)

2τ ∗ + 1
.

Proposition 5 implies that pim decreases in δ and increases in ∆0. That is, the greater is the

discount factor (the smaller is the value of a suboptimal trade), the smaller is an individual
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agent’s likely price impact (and the thicker is the market, measured in this way). Whether

pim increases or decreases in the probability w(1 − w) of a contemporaneously arriving

suboptimal pair cannot be determined in general because of the two opposing effects: the

threshold τ ∗ increases in w(1−w), which all else decreases pim, but w(1−w) directly increases

pim because a suboptimal pair is required to move the price away from 1/2 in the first place.

4.3 The profit-maximizing efficient posted price mechanism

Extending our previous analysis, we now consider posted price mechanisms under which the

designer charges traders a bid-ask spread and compute the posted price mechanism that

implements the efficient allocation, whilst maximizing profit for the market maker.

We define the bid-ask spread posted price mechanism associated with a threshold τ ≥ 1

as follows: If the number of suboptimal pairs stored in the order book is y < τ , the designer

posts prices pB = 1 and pS = 0. If the number of suboptimal pairs stored in the order book

is y = τ , the designer posts prices pB = ∆0 and pS = 0, provided the stored pairs are of

the types (v, c), and the designer posts the prices pB = 1 and pS = 1 − ∆0 otherwise. A

last-come-first-served queueing protocol is used to determine the order in which agents are

cleared from the market and to break ties if necessary.

Proposition 7. The bid-ask spread posted price mechanism with τ = τ ∗ provides a P-IC

and P-IR implementation of the efficient allocation and, within the class of posted price

mechanisms identified in Definition 2, maximizes the market maker’s profit.

The intuition behind this result is as follows. If the designer increases any of the posted

prices in any period, the mechanism will fail to implement the efficient allocation. So we have

found the desired mechanism provided the appropriate incentive constraints hold. Checking

the P-IR constraints and the P-IC constraints for worst-off types is completely routine, while

the P-IC constraints hold for the efficient types by virtue of the last-come-first-served queue-

ing protocol, which ensures that efficient types that misreport eventually leave the market

without trading.34 The bid-ask spread posted price mechanism, although optimal among

34Note that with a different queueing protocol (such as rationing uniformly at random), the designer would
not necessarily be able to offer pB = 1 and pS = 0 whenever the order book is below capacity. If there is a
non-zero probability that a buyer of type v who rejected pB = 1 is eventually able to trade at pB = ∆0, the
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posted price mechanisms, does not coincide with the profit-maximizing efficient mechanism

because of foregone profit on efficient trades executed with a buyer’s price of pB = 1 − ∆0

or a seller’s price of pS = ∆0.

Notice also that the profit maximizing, efficient bid-ask spread posted price mechanism

involves a spread that varies with the order book. In particular, the spread is 1 when

y < τ ∗ and ∆0 otherwise. Thus, Proposition 7 implies any posted price with a fixed spread,

or equivalently, with a fixed fee per unit traded, is not a profit-maximizing, efficient price

posting mechanism.

5 Approximately optimal mechanisms

Beyond incentive compatibility, individual rationality and feasibility, in reality, additional

constraints are often imposed on market makers. For example, in foreign exchange spot mar-

kets such as Thomson Reuters, ParFX, and EBS, clearing is uniform in that all compatible

orders are cleared at once when clearing occurs while the time intervals that elapse between

clearings depend on the orders received. In other trading venues, such as the Global Dairy

Trade (GDT), market clearing is both uniform and occurs at a fixed frequency (fortnightly

in the case of GDT), which we refer to as fixed frequency market clearing.

Definition 3. Under uniform market clearing the entire market is cleared at the time of

clearing. Fixed frequency market clearing requires that, in addition to market clearing being

uniform, the market is cleared at fixed intervals.

In this section we study the optimal mechanisms under these additional and natural

restrictions. In particular, we show that these mechanisms are approximately optimal when

the discount factor is large enough. The intuitive reason is that, as everyone becomes patient

enough, the designer executes only high-margin trades, which is possible to approximate even

under these natural restrictions. Furthermore, provided the agents are sufficiently patient,

a profit-maximizing designer generates greater welfare than a more constrained, welfare-

targeting designer. For ease of exposition we again consider the symmetric binary type

market maker would need to offer a spread with pB < 1 so that the incentive compatibility constraint for
efficient buyers is not violated. Similar logic applies to sellers.
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setup in the section. However, in Online Appendix B.3 we show that the main results of this

section (Theorems 2 and 3) generalize to general discrete type spaces (see Theorems B3 and

B4 in the Online Appendix). Finally, we also defer the derivation and analysis of the class

of optimal mechanisms under uniform and fixed frequency market clearing for binary type

spaces to Online Appendix B.

Let WD,α denote the expected discounted welfare gains (starting from an empty market

at t = 0) under discriminatory market clearing, which corresponds to the form of market

clearing we have studied thus far, with a designer who maximizes (1− α)W + αR with α ∈

[0, 1]. Similarly, we use the notation WU,α, W F,α and W 0,α for uniform market clearing, fixed

frequency market clearing and instantaneous trade, respectively. Total expected discounted

welfare gains from the periodic ex post efficient market mechanism, which for brevity we

simply call instantaneous trade, are35

W 0,0(δ) =
1

1− δ
(
w2 + 2w(1− w)∆0

)
. (17)

5.1 Asymptotic gains from sophistication

We first compare the benefits from increasing sophistication for a given α as δ → 1. Since

welfare under each form of market clearing diverges in this limit, we consider the relative

gains from increased sophistication that are defined as

GD,U
α (δ) :=

WD,α(δ)−WU,α(δ)

WD,α(δ)
and GU,F

α (δ) :=
WU,α(δ)−W F,α(δ)

WU,α(δ)

and

GF,0
α (δ) :=

W F,α(δ)−W 0,α(δ)

W F,α(δ)
.

Theorem 2. In the δ → 1 limit, the relative gains from sophistication are given by

lim
δ→1

GD,U
α (δ) = lim

δ→1
GU,F
α (δ) = 0 < (1− w)(1− 2∆α) = lim

δ→1
GF,0
α (δ).

35It is interesting to note that under continuous-time double auction mechanisms feasible trades are also
executed immediately. Thus, the outcome of instantaneous trade is the same as the outcome that would
result under a continuous-time double auction with truthful bidding. Continuous-time double auctions are
not incentive compatible as the bid of a given trader affects both the probability of trade and, in the event
that trade occurs, the market price. Under strategic bidding one would expect efficient types to bid shade
in order to avoid trading with an inefficient type so that they receive a higher expected payoff. Although
the equilibrium behavior of a continuous-time double-auctions is difficult to characterize (see for example,
Satterthwaite and Williams (2002)), the outcome under the first-best mechanism provides an efficiency
benchmark for evaluating the outcome of a continuous-time double auction.

33



æ

æ

æ

æ

æ

æ æ æ æææææ
æ

æ

æ

æ

æ

æ

æ

0.85 0.90 0.95 1.00
d

0.06

0.07

0.08

0.09

0.10
1-WU ,0êW D,0

w=0.5, D0=0.1

(a) Discrim. vs. uniform

æ

æ

æ

æ
æ

ææ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ
æ

0.7 0.8 0.9 1.0
d

5

10

15

1-W F ,0êWU ,0

w=0.5, D0=0.1

(b) Uniform vs. fixed freq.

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

0.85 0.90 0.95 1.00
d0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
1-W 0,0êW F ,0

w=0.5, D0=0.1

(c) Fixed freq. vs. decent.

Figure 7: The relative gains from additional sophistication.

Theorem 2 is illustrated numerically in Figure 7. The theorem says that the relative gains

from additional sophistication vanish while the relative gains from any degree of sophistica-

tion relative to instantaneous trade remain strictly positive as δ approaches 1. Intuitively,

because instantaneous trade corresponds to fixed frequency market clearing with the fre-

quency given by the period and because all other forms of dynamic market clearing which

we consider impose fewer restrictions than fixed frequency market clearing, it also follows

that the welfare-maximizing mechanism under uniform and fixed frequency market clearing

weakly outperforms instantaneous trade in terms of social welfare gains. The outcome under

instantaneous trade coincides with the efficient outcome when δ is so close to 0 that storing

is not efficient.

Much harder is the comparison of social welfare gains under the optimal profit-maximizing

mechanism to those under instantaneous trade because a simple argument based on less

constrained optimization cannot be used: As one goes from periodic ex post efficient trade

to profit-maximizing discriminatory market clearing, one not only eliminates constraints but

also alters the objective that is maximized. We provide this comparison in the following

subsection.

5.2 Welfare under sophisticated, profit-targeting exchanges

Creating larger markets and employing increasingly sophisticated mechanisms may involve

costs such as advertising and promotion, physical infrastructure investments, and labor.

In addition, large exchanges are often operated by profit-seeking companies whereas small

exchanges through which instantaneous trade occurs can plausibly be thought of as extracting
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little to no rents. This renders the question relevant whether a larger, profit-maximizing

exchange creates greater welfare gains than instantaneous (periodic ex post efficient) trade.

In the main result of this section, we show that the answer is affirmative, provided the

discount factor is large enough. Further, a pertinent issue in the design of two-sided markets

is the need to “bring both sides of the market on board” (see, for example, Caillaud and

Jullien, 2003; Rochet and Tirole, 2006). While a full analysis of this question requires a

different model and is thus beyond the scope of this paper, the following result sheds new

light on this question.

Theorem 3. For all k ∈ {D,U, F} there exists δk ∈ [0, 1) such that W k,1(δk) = W 0,0(δk)

and W k,1(δk) > W 0,0(δk) for all δ > δk.

Theorem 3 says that for sufficiently large discount factors, a profit-maximizing platform

generates greater welfare gains than instantaneous, periodic ex post efficient trade. This is

so because efficient types trade with relatively high probability under the profit-maximizing

platform, which is efficient for a sufficiently large discount factor. Therefore, if a profit-

oriented centralized platform needs to attract buyers and sellers from a welfare-maximizing

platform which induces trade instantaneously, by Theorem 3 the profit-oriented platform

can do so by offering a sufficiently high share of the trade surplus to efficient types while

extracting all surplus from the inefficient types. By getting the key players on board (in our

setting, these are the buyers of type v and the sellers with cost c) the others will have no

choice but to follow suit.

One natural interpretation is that the profit-maximizing market maker is an Internet giant

while the periodic ex post efficient exchange can be thought of as a brick-and-mortar retailer

(or a mum-and-dad shop). Although the theorem does, of course, not imply that profit-

maximizing Internet giants are necessarily better for social welfare than more traditional

shops, it does provide a formalization of the notion of overwhelming returns to scale due to

the gains from market thickness.
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6 Conclusions

Economic agents interact in an inherently dynamic world. Agents without a trading partner

today may find one in the future, and agents with a possible trading partner today may find

better trading opportunities further down the track. While a large literature on the micro-

foundations of Walrasian equilibrium has studied equilibrium behavior as (search) frictions

(often captured by a discount factor) vanish, we address the converse question of what is

the best a market maker can do for a given discount factor. To be specific, we derive the

optimal market mechanism for an environment with stochastically arriving traders who are

privately informed about their values and costs. This mechanism balances the gains from

increased market thickness against the opportunity cost of delay from waiting to clear the

market.

We show that, with binary types, efficient, incentive compatible and individually rational

trade is possible with an ex post budget balanced mechanism – posted prices – if it is optimal

to store at least one trade. This result has a Coasian flavor because it means that initial

misallocations can be resolved efficiently if agents are not too impatient. At the same time,

it also provides a rationale for market design because instantaneous trade (that is, a periodic

ex post efficient mechanism that never stores traders) is not efficient in our dynamic setting

under these conditions.

The distribution of posted prices that implement the efficient allocation rule is uniform

when it is optimal to store one trade and converges to a degenerate distribution with all mass

on a single Walrasian price for a static model with a continuum of traders as the discount

factor approaches one. While these results are reminiscent of findings in the literature on the

microfoundation of Walrasian equilibrium, there is an important difference: The distribution

of posted prices we derive implements the efficient allocation rule for any discount factor,

provided only it is optimal to store at least one trade.

We also derive the mechanism that maximizes the market maker’s expected profit and

show, among other things, that the social welfare gains associated with this mechanism

exceed social welfare gains of a periodic ex post efficient mechanism that never stores trades

if the discount factor is sufficiently large. While most of our analysis allows the market
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maker the clear the market discriminatorily, we extend the analysis for uniform and fixed

frequency market clearing and show that, as the discount factor approaches one, the relative

social welfare gains under all of these mechanisms converge.

Our paper opens a number of avenues for future research. For example, introducing

product differentiation – such as spatial differentiation – would allow one to analyze dynamic

allocation problems such as those that ride-sharing service providers face. Another natural

and promising extension would be to endow agents with some units of the good and have

them decide endogenously whether they want to buy or sell, which would permit a dynamic

analysis of asset markets in which agents choose their trading positions – buy, sell, hold –

endogenously.

Furthermore, a large number of papers in the finance literature have shown that large

institutional traders optimally reduce their price impact by breaking up their trades when

a fixed, suboptimal mechanism is used to clear the market.36 In light of this, an interesting

extension of our model would be to accommodate large traders and to analyze the impact

of traders’ size on the optimal market clearing mechanism. Given the prominent role inter-

dependent values play in models of financial markets, it would also be valuable to allow for

some form of interdependence in our setting. However, because it is not quite clear what the

suitable set of assumptions would be when agents with persistent types arrive over time, this

problem is best left for future research. More fundamentally, our paper offers the possibility

of analyzing market thickness, price distributions, and market impact under the hypothesis

that the market operates under an optimal mechanism for a variety of environments.
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Appendix

A Proofs

A.1 Proof of Proposition 1

Proof. We start by proving the result with Bayesian incentive compatibility and individual

rationality constraints. Let V Bt and CSt denote the respective types of the buyer and seller

that arrive in period t. When Bt reports v̂Bt and St reports ĉSt the respective interim

discounted allocation probabilities, assuming all other agents arriving after period t − 1

report truthfully, are given by

qBt(v̂Bt) =
∞∑
i=t

∑
hi∈Hi

δi−1QBt
i (hi)P(H i = hi|V Bt = v̂Bt),

qSt(ĉSt) =
∞∑
i=t

∑
hi∈Hi

δi−1QSt
i (hi)P(H i = hi|CSt = ĉSt),

(18)

where P(H i = hi|V t = v̂Bt) denotes the conditional probability that the period i ≥ t report

history is hi, given that Bt reports v̂Bt in period t, and analogously for P(H i = hi|CSt = ĉSt).

Similarly, when Bt reports v̂Bt and St reports ĉSt the respective expected interim discounted

payments, assuming all other agents arriving after period t − 1 report truthfully, are given

by

mBt(v̂Bt) =
∞∑
i=t

∑
hi∈Hi

δi−1MBt
i (hi)P(H i = hi|V Bt = v̂Bt),

mSt(ĉSt) =
∞∑
i=t

∑
hi∈Hi

δi−1MSt
i (hi)P(H i = hi|CSt = ĉSt).

Next, we need to use the binding incentive compatibility and individual rationality con-

straints to write the payments in terms of the allocation rule and the agent types. First, for

the worst-off types the individual rationality constraints bind and we have

mBt(v1) = v1q
Bt(v1) and mSt(cm) = cmq

St(cm).

For all other buyer types i ∈ {2, . . . , n}, the incentive compatibility constraint binds locally

downwards and we have

mBt(vi) = vi(q
Bt(vi)− qBt(vi−1)) +mBt(vi−1).
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Setting qBt(v0) = 0 for notational convenience and using recursive substitution we have, for

all types i ∈ {1, . . . , n},

mBt(vi) =
i∑

k=1

vk(q
Bt(vk)− qBt(vk−1)). (19)

Similarly, for all other seller types j ∈ {1, . . . ,m− 1}, the incentive compatibility constraint

binds locally upwards and we have

mSt(cj) = cj(q
St(cj)− qSt(cj+1)) +mSt(cj+1).

Setting qSt(cm+1) = 0 for notational convenience and using recursive substitution we have,

for all types j ∈ {1, . . . ,m},

mSt(cj) =
m∑
k=j

ck(q
St(ck)− qSt(ck+1)). (20)

Finally, starting from (4) can rewrite the virtual type functions as

Φ(vi) = vi

(
1 +

1− F (vi)

f(vi)

)
− vi+1

1− F (vi)

f(vi)

= vi
1− F (vi) + f(vi)

f(vi)
− vi+1

1− F (vi)

f(vi)

= vi
1− F (vi−1)

f(vi)
− vi+1

1− F (vi)

f(vi)
(21)

and

Γ(cj) = cj

(
1 +

G(cj−1)

g(cj)

)
− cj−1

G(cj−1)

g(cj)

= cj
G(cj−1) + g(cj)

g(cj)
− cj−1

G(cj−1)

g(cj)

= cj
G(cj)

g(cj)
− cj−1

G(cj−1)

g(cj)
. (22)
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We can now write the profit of the designer in terms of agents’ virtual types as follows

R =
∞∑
i=1

E
[
mBi(V Bi)−mSi(CSi)

]
=
∞∑
i=1

n∑
k=1

mBi(vk)f(vk)−
∞∑
i=1

m∑
k=1

mSi(ck)g(ck)

=
∞∑
i=1

n∑
k=1

k∑
`=1

v`(q
Bi(v`)− qBi(v`−1))f(vk)−

∞∑
i=1

m∑
k=1

m∑
`=k

c`(q
Si(c`)− qSi(c`+1))g(ck)

=
∞∑
i=1

n∑
`=1

n∑
k=`

v`(q
Bi(v`)− qBi(v`−1))f(vk)−

∞∑
i=1

m∑
`=1

∑̀
k=1

c`(q
Si(c`)− qSi(c`+1))g(ck)

=
∞∑
i=1

n∑
`=1

v`(q
Bi(v`)− qBi(v`−1))(1− F (v`−1))−

∞∑
i=1

m∑
`=1

c`(q
Si(c`)− qSi(c`+1))G(c`)

=
∞∑
i=1

n∑
`=1

[v`(1− F (v`−1))− v`+1(1− F (v`))]q
Bi(v`)

−
∞∑
i=1

m∑
`=1

[c`G(c`)− c`−1G(c`−1)]qSi(c`)

=
∞∑
i=1

n∑
`=1

Φ(v`)q
Bi(v`)f(v`)−

∞∑
i=1

m∑
`=1

Γ(c`)q
Si(c`)g(c`).

Here, the first line used the definition of designer profit, the second line computed the

expectation over the types of the period i buyer and seller, line three used (19) and (20),

line four interchanged the order of the inner summations, line five computed the innermost

summation, line six collected terms by allocation rather than type and line seven used (21)

and (22). Next, using (18) gives

R =
∞∑
i=1

n∑
`=1

Φ(v`)
∞∑
t=i

∑
ht∈Ht

δt−1QSi
t P(H t = ht | V Bi = v`)f(v`)

−
∞∑
i=1

m∑
`=1

Γ(c`)
∞∑
t=i

∑
ht∈Ht

δt−1QBi
t P(H t = ht | CSi = c`)g(c`)

=
∞∑
i=1

∞∑
t=i

∑
ht∈Ht

n∑
`=1

δt−1Φ(v`)Q
Bi
t (ht)P(H t = ht|V Bi = v`)f(v`)

−
∞∑
i=1

∞∑
t=i

∑
ht∈Ht

m∑
`=1

δt−1Γ(c`)Q
Si
t (ht)P(H t = ht|CSi = c`)g(c`)
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and using the law of total probability we have

R =
∞∑
i=1

∞∑
t=i

∑
ht∈Ht

δt−1Φ(vBi(ht))Q
Bi
t (ht)P(H t = ht)

−
∞∑
i=1

∞∑
t=i

∑
ht∈Ht

δt−1Γ(cSi(ht))Q
Si
t (ht)P(H t = ht)

=
∞∑
t=1

t∑
i=1

∑
ht∈Ht

δt−1
(
Φ(vBi(ht))Q

Bi
t (ht)− Γ(cSi(ht))Q

Si
t (ht)

)
P(H t = ht)

as required.

Repeating this procedure, we can show that the result also holds under interim and

periodic ex post incentive constraints. Under interim incentive constraints, we let m(θ̂,ht−1)

denote the expected discounted payment for an agent that reports θ̂ at history ht−1 and

compute

R =
∞∑
i=1

EVi,Ci,Ht−1

[
mBi(Vi,H t−1)−mSi(Ci,H t−1)

]
=
∞∑
i=1

∑
ht−1∈Ht−1

[
n∑
`=1

Φ(v`)q
Bi(v`,ht−1)f(v`)−

m∑
`=1

Γ(c`)q
Si(c`,ht−1)g(c`)

]
P(H t−1 = ht−1)

=
∞∑
i=1

∞∑
t=i

∑
ht∈Ht

∑
ht−1∈Ht−1

δt−1

[
n∑
`=1

Φ(v`)Q
Bi
t (ht)P(H t = ht|V Bi = v`,H t−1 = ht−1)f(v`)

−
m∑
`=1

Γ(c`)Q
Si
t (ht)P(H t = ht|CSi = c`,H t−1 = ht−1)g(c`)

]
P(H t−1 = ht−1).

Applying the law of total probability we then have

R =
∞∑
t=1

t∑
i=1

∑
ht∈Ht

δt−1
(
Φ(vBi(ht))Q

Bi
t (ht)− Γ(cSi(ht))Q

Si
t (ht)

)
P(H t = ht)

as required. Intuitively, conditioning period t allocations and payments for each agent on

the period t− 1 history makes no difference to the profit of the designer when we sum over

all histories.

Similarly, under periodic ex post incentive constraints, we let m(θ̂, ϑ,ht−1) denote the

expected discounted payment for an agent that reports θ̂ at history ht−1 when the other
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period t agent reports ϑ and compute

R =
∞∑
i=1

EVi,Ci,Ht−1

[
mBi(Vi, Ci,H t−1)−mSi(Ci, Vi,H t−1)

]
=
∞∑
i=1

∑
ht−1∈Ht−1

n∑
`=1

m∑
k=1

[
Φ(v`)q

Bi(v`, ck,ht−1)− Γ(ck)q
Si(ck, v`,ht−1)

]
f(v`)g(c`)

× P(H t−1 = ht−1)

=
∞∑
i=1

∞∑
t=i

∑
ht∈Ht

∑
ht−1∈Ht−1

n∑
`=1

m∑
k=1

δt−1
[
Φ(v`)Q

Bi
t (ht)− Γ(ck)Q

Si
t (ht)

]
× P(H t = ht|V Bi = v`, C

Si = ck,H t−1 = ht−1)f(v`)g(ck)P(H t−1 = ht−1).

Applying the law of total probability we then have

R =
∞∑
t=1

t∑
i=1

∑
ht∈Ht

δt−1
(
Φ(vBi(ht))Q

Bi
t (ht)− Γ(cSi(ht))Q

Si
t (ht)

)
P(H t = ht)

as required.

A.2 Proof of Theorem 1

Proof. The proof proceeds by deriving the optimal policy of the Markov decision process

and mapping this to the optimal allocation rule, before checking the relevant incentive con-

straints.

First, note that by Theorem 6.2.10 of Puterman (1994) there exists a deterministic sta-

tionary optimal policy of the Markov decision process. Second, note that the optimal policy

must immediately clear all efficient pairs. Third, note that sample paths of the Markov

decision process are such that if xS suboptimal trades are stored in a given period, xS − 1

trades must have been stored in some previous period. Thus, if xS suboptimal trades are

stored under the stationary optimal policy, it must be optimal to retain xS − 1 trades.

An unbounded number of suboptimal pairs cannot be stored under the optimal policy

since as the number of stored suboptimal pairs diverges to infinity, the expected number of

periods until an additional stored suboptimal pair is rematched diverges to infinity. Thus,

the expected discounted benefit of storing an additional suboptimal pair converges to zero,

while the benefit of immediately clearing a suboptimal pair is always ∆α > 0. Putting
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everything together, there exists a maximum number τ ∗ of suboptimal trades which can be

optimally stored and the optimal policy π∗ is a threshold policy.

For the incentive constraints, it suffices to show that qBt(v) ≥ qBt(v) and qSt(c) ≥

qSt(c). The allocation rule induced by the optimal threshold policy π∗ is unique up to the

queueing protocol for storing suboptimal pairs. We let q(θ, ϑ) denote the expected discounted

probability of trade under the optimal policy for an agent of type θ, who arrives with an

agent of type ϑ.37 Start by considering the arrival of a buyer of type v in period t. If

this buyer is paired with a seller of type c (which occurs with probability w), that trade is

immediately executed. Otherwise, the buyer will be stored as part of a suboptimal pair. We

have

qBt(v) = δt−1 [w + (1− w)q(v, c)] . (23)

Next, consider the arrival of a buyer of type v in period t. This agent trades with non-zero

probability only if it arrives as part of a suboptimal pair and we have

qBt(v) = δt−1wq(v, c). (24)

Comparing (23) and (24) we see that qBt(v) ≥ qBt(v) since q(v, c) ≤ 1. An analogous

argument shows that qSt(c) ≥ qSt(c).

A.3 Proof of Corollary 1

Proof. The first part of Corollary 1 follows immediately from the fact that inefficient (v, c)

pairs neither contribute to social welfare nor the profit of the designer. We now prove the

second part of the corollary. We start by noting that by definition the designer’s objective

function is maximized under any optimal market clearing policy π∗ and so (1−α)W +αR is

invariant to the queueing protocol. Furthermore, the queueing protocol cannot affect social

welfare W since it is only used to break ties among traders of the same type. Thus, the

profit of the designer R is also invariant to the queueing protocol.

37Here, we take the expectation over the types of past and future agents. We can be agnostic about the
queueing protocol for suboptimal pairs.
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A.4 Proof of Proposition 2

Proof. The transition matrix P of the order book Markov chain {Yt}t∈N is given by

P =



1− 2λ 2λ 0 · · · 0 0 0
λ 1− 2λ λ 0 0 0
0 λ 1− 2λ 0 0 0
...

. . . . . . . . . . . . . . .
...

0 0 0 1− 2λ λ 0
0 0 0 λ 1− 2λ λ
0 0 0 . . . 0 λ 1− λ


,

where λ = w(1 − w). So we are dealing with a simple birth-and-death process (see, for

example, pages 184–189 in Borovkov (2014)). For such processes, it is well-known that the

stationary distribution κ of the Markov chain {Yt}t∈N is given by

κ0 =
1

2τ + 1
, ∀i ∈ {1, . . . , τ}, κi =

2

2τ + 1
.

We now compute the market maker’s expected period t payoff when the market is sta-

tionary under the threshold policy with threshold τ . With probability w2 a (v, c) pair arrives

and with probability (1 − w)2 a (v, c) pair arrives, creating respective payoffs of 1 and 0.

A suboptimal pair arrives with probability 2w(1 − w). With probability τ/(2τ + 1) this

pair arrives to a market in which non-identical suboptimal pairs are stored. In this case,

it is rematched to create an efficient trade which is immediately cleared. With probability

τ/(2τ+1) the number of identical suboptimal pairs stored is less than τ and the arriving pair

is stored. Finally, with probability 1/(2τ + 1) the maximum number of identical suboptimal

pairs are stored and the one suboptimal pair is immediately cleared. Thus, assuming the

market is stationary, the market maker’s expected period t payoff is

w2 +
2w(1− w)(∆α + τ)

2τ + 1
.

A.5 Proof of Proposition 3

Proof. Since the optimal policy is stationary, the first part of the proposition can be proven

using the stationary payoff. If the designer changes the market clearing threshold from τ to
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τ + 1, the expected change in welfare under the stationary distribution is

WD(τ + 1)−WD(τ) =
1

1− δ
2w(1− w)(1− 2∆α)

(2τ + 3)(2τ + 1)
.

Differentiating with respect to the problem parameters, we obtain

∂(WD(τ + 1)−WD(τ))

∂δ
=

1

(1− δ)2

2w(1− w)(1− 2∆α)

(2τ + 3)(2τ + 1)
> 0,

∂(WD(τ + 1)−WD(τ))

∂w(1− w)
=

1

1− δ
2(1− 2∆α)

(2τ + 3)(2τ + 1)
> 0

∂(WD(τ + 1)−WD(τ))

∂∆α

= − 1

1− δ
4w(1− w)

(2τ + 3)(2τ + 1)
< 0.

Since the payoff associated with increasing τ is increasing in w(1−w) and decreasing in ∆α,

so too is τ ∗.

Next, examining (13) reveals that for xS ∈ {0, 1, . . . , τ ∗} an increase in ∆α leads to an

increase in V D
τ∗ (xS). Since the total expected discounted payoff is increasing for each state,

total expected discounted welfare gains are increasing in ∆α. For xS ∈ {1, . . . , τ ∗−1}, ranking

the outcomes on the right-hand side of (13) by payoff gives 1 + V D
τ∗ (xS) > 1 + V D

τ∗ (xS − 1) >

V D
τ∗ (xS + 1) > V D

τ∗ (xS). The outcomes 1 + V D
τ∗ (xS − 1) and V D

τ∗ (xS + 1) occur with equal

probability and an increase in w leads to an increase in the probability of the best outcome

and a decrease in the probability of the worst outcome. Since similar reasoning applies to

the boundary equations (that is, those corresponding to xS = 0 and xS = τ ∗), an increase in

w increases the total expected discounted payoff for each state. Thus, total expected welfare

is increasing in w.

Finally, noting that ∆α is increasing ∆0, we see that all statements regarding ∆α also

hold for ∆0.

A.6 Proof of Corollary 2

Proof. Differentiating ∆α yields

∂∆α

∂α
= − w

1− w
(1−∆0) < 0.

Recall from the proof of Proposition 3 that τ ∗ is decreasing in ∆α. Combining this with the

previous result shows that τ ∗ is increasing in α. Thus, market thickness as measured by τ ∗

is increasing in α.
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A.7 Proof of Proposition 4

Proof. Consider the decision to store the jth suboptimal pair. The instantaneous reward

from clearing this pair immediately is ∆α, while an upper bound on the payoff associated

with storing this pair is δj(1 −∆α).38 For storing the jth trader to be profitable, we must

have

δj(1−∆α) > ∆α.

Hence, τ ∗ must be such that

τ ∗ <
log
(

∆α

1−∆α

)
log (δ)

.

In the limit as δ → 1 (i.e. taking a Laurent series expansion of 1/ log(δ) about δ = 1), we

have an upper bound on τ ∗ of

τ ∗ ≤
log
(

1−∆α

∆α

)
1− δ

+
log
(

∆α

1−∆α

)
2

+O(1− δ).

A.8 Proof of Proposition 5

Proof. Suppose that τ ∗ > 0 for α = 0. We have already argued that the balanced budget

posted price mechanism with τ ∗ implements the efficient allocation rule, assuming truthful

reporting. Furthermore, the balanced budget posted price mechanism does not run a deficit

by construction. However, we need to check the P-IC and P-IR incentive constraints. First,

note that agents of type v and c receive a payoff of zero whenever they report truthfully,

since under truthful reporting these agents will only accept prices of v and c respectively.

This holds regardless of the history and the types of contemporary agents. If these agents do

not report truthfully and accept a posted price of 1/2, they will receive a negative expected

38Note that this is an upper bound because the value associated with storing the jth pair cannot be
realized until j non-identical suboptimal pairs have arrived, which cannot occur for at least j subsequent
periods. When the stored suboptimal pair is cleared, this produces an instantaneous reward of 1 for the
designer. Of course, if the jth pair was not stored, the jth non-identical suboptimal pair would have been
stored, generating an expected discounted payoff of at least ∆α (otherwise it cannot be optimal to store even
one identical suboptimal pair, let alone j of them).
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discounted payoff. Again, this holds regardless of the history and the types of contemporary

agents. Thus, the P-IC and P-IR constraints are satisfied. If agents of type v are offered

a posted price of ∆0, they will clearly accept regardless of the history and of the types of

contemporary agents. If a price of 1/2 or 1−∆0 is observed, misreporting guarantees that

the buyer will eventually leave the market without trading (either immediately or later due

to the last-come-first-served queueing protocol), regardless of the history and the types of

contemporary agents. However, reporting truthfully ensures that the buyer will eventually

trade either at a price of 1/2 or 1−∆0. Thus, the B-IC constraint holds for buyers of type v.

Similarly, it is clear that truthfully reporting guarantees buyers of type v a positive expected

discounted payoff regardless of the history and regardless of the types of contemporary agents.

Therefore, the P-IR constraint is also satisfied. Since a similar argument applies to sellers

of type c, we have a P-IC and P-IR mechanism as required.

Next, suppose that the efficient allocation rule can be implemented using a P-IC and

P-IR budget balanced posted price mechanism. Then we must have τ ∗ > 0 for α = 0, since

the balanced budget posted price mechanism cannot implement the efficient allocation rule if

τ ∗ = 0. This follows immediately from the fact that there is no price that can clear efficient

trades and both types of suboptimal trades.

A.9 Proof of Corollary 3

Proof. For α = 0, both the budget balanced posted price mechanism and the optimal mech-

anism implement the efficient allocation. However, the optimal mechanism maximizes the

profit of the market maker within the class of efficient, P-IC and P-IR mechanisms and is

not subject to the posted price constraint. Therefore, since the balanced budget mechanism

does not run a deficit, neither can the optimal mechanism.

A.10 Proof of Proposition 6

Note that as this proof pertains to the general setup from Section 2.1, we use the Markov

decision process notation from Online Appendix B.1. We also let V D
π (x) denote the ex-

pected discounted present value of being in state x under the policy π. Before proving the

proposition, we prove the following lemma.
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Lemma A1. Let the optimal policy π∗ be given and consider the associated order book

Markov chain of positive recurrent states Y∗. Then for any policies π and π′ and associated

Markov chains Y and Y ′ such that Y ⊂ Y ′ ⊂ Y∗ we have V D
π∗(x) ≥ V D

π′ (x) ≥ V D
π (x) for all

states x ∈ X .

Proof. That V D
π∗(x) ≥ V D

π′ (x) and V D
π∗(x) ≥ V D

π (x) for all states x ∈ X follows from the

principle of optimality of dynamic programming. That V D
π′ (x) ≥ V D

π (x) follows from the

fact that Y ′ \ Y ⊂ Y∗, so storing in the states Y ′ \ Y is optimal under π∗.

We now prove Proposition 6 using the previous lemma.

Proof. First, we consider the continuum limit as δ → 1. With discrete type spaces there

exists an interval [pW , pW ] of prices that implement the Walrasian allocation (with pW 6= pW

provided we exclude trades that generate zero social surplus). Thus, by posting a price of

pB = pW for buyers and a price of pS = pW in every period, the designer can implement

the Walrasian allocation and generate a surplus in every period and the designer’s expected

discounted profit diverges.

Next, let YD,0(δ) and YD,1(δ) denote the set of positive recurrent states of the order

book Markov chain under the optimal policies for welfare-maximizing and profit-maximizing

discriminatory market clearing, respectively. Recall that these sets are both increasing

(in the set-inclusion sense) in δ. Under the assumption of dynamic regularity we have

YD,0(δ) ⊂ YD,1(δ) by Proposition B2. It follows that profit RD,0(δ) under welfare maxi-

mization increases discontinuously at points at which the set YD,0(δ) increases by Lemma

A1 but may decrease in δ over intervals such that YD,0(δ) is constant. However, since

lim inf
δ→1

RD,0(δ) = ∞ it follows that there exists a δ < 1 such that RD,0(δ) > 0 for all δ > δ.

That the optimal policies are implementable using a P-IC and P-IR mechanism follows from

Theorem B1 (see Online Appendix B.1).

A.11 Proof of Proposition 7

Proof. Clearly, the efficient allocation cannot be implemented by a posted price mechanism

with a larger bid-ask spread, so we only need to check that the relevant incentive constraints

hold. First, agents of type v and c can guarantee themselves a payoff of 0 by always accepting
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respective prices of pB = ∆0 and pS = 1 − ∆0 and rejecting otherwise. Thus, the P-IR

constraints hold for these types. Furthermore, these agents do strictly worse if they accept

prices of pB = 1 or pS = 0 because they then receive a negative expected payoff. Thus,

the P-IC constraints for worst-off types hold. The P-IR constraints hold for the efficient

types because these types guarantee themselves a non-negative expected discounted payoff

by always accepting every posted price. Thus, to complete the proof we only need to verify

that buyers of type v will accept a posted price of pB = 1 whenever they arrive to an order

book below capacity (the argument for sellers of type c is analogous). Clearly, if (v, c) pairs

are stored, buyers of type v cannot benefit from rejecting a price of pB = 1 because this will

result in their removal from the market. Therefore, we suppose that ι ∈ {0, 1, . . . , τ ∗ − 1}

(v, c) suboptimal pairs are stored, so that rejecting pB = 1 either results in the buyer being

stored as part of a suboptimal pair or removed from the market. A buyer of type v can

only benefit from rejecting a price of pB = 1 if they are stored as part of a suboptimal trade

and they then trade with non-zero probability at a price of pB = ∆0. However, this can

never happen with a last-come-first-serve protocol because once τ ∗ pairs are stored and the

designer posts a price of pB = ∆0, that price will always be accepted by the arriving buyer

who has priority over the stored buyers. Thus, all of the appropriate incentive constraints

have been verified.

A.12 Proof of Theorem 2

Proof. Under discriminatory, uniform and fixed frequency market clearing per period wel-

fare converges to w as δ → 1 and under instantaneous market clearing is always given by

w2 + 2w(1 − w)∆0. Hence, limδ→1W
U,α(δ)/WD,α(δ) = limδ→1W

F,α(δ)/WU,α(δ) = 1 and

limδ→1W
0,α(δ)/W F,α(δ) = w + 2(1− w)∆0 and the desired result immediately follows.

A.13 Proof of Theorem 3

For ease of exposition, we formally prove the theorem for the k = D case. The other cases are

similar. However, before proceeding to the proof of the main result, we start by stating and

proving the following lemma (which applies specifically to discriminatory market clearing, a

more general version can be found in Lemma A1).
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Lemma A2. Let the optimal threshold τ ∗ under discriminatory market clearing and integer

i ≥ 0 be given. Then V D
τ (i) increases in τ for τ ∈ {0, 1, . . . , τ ∗ − 1}, decreases in τ for

τ ≥ τ ∗ + 1 and attains a global maximum at τ = τ ∗.

Proof. First, take τ = τ ∗ + 1. Then V D
τ∗ (i) ≥ V D

τ∗+1(i) by the principle of optimality of

dynamic programming. Next, consider τ = τ ∗ + 2. To prove that Vτ (i) ≤ Vτ−1(i) it suffices

to show that this holds for i = τ (since this is the state at which the policies πτ and

πτ−1 diverge). Here, we have V D
τ (τ) ≤ r(0, 1) + V D

τ (τ − 1) ≤ r(0, 1) + V D
τ−1(τ − 1) because

clearing two suboptimal pairs in state τ is optimal under τ ∗ and there are no complementaries

assocaited with clearing multiple pairs (i.e. r(0, 2) = r(0, 1) + r(0, 1)). Thus, clearing one

suboptimal pair in state τ must yield a higher payoff than taking no action. Iterating, we

have that V D
τ (i) decreases in τ for τ ≥ τ ∗. Next, set τ = τ ∗ − 1. Then V D

τ∗ (i) ≥ V D
τ∗−1(i)

by the principle of optimality of dynamic programming. Finally, setting τ = τ ∗ − 2 we have

r(0, 1)+V D
τ (τ) ≤ r(0, 1)+V D

τ+1(τ) ≤ V D
τ+1(τ +1) since storing in state τ +1 is optimal under

τ ∗. Iterating, we have that V D
τ (i) increases in τ for τ ∈ {0, 1, . . . , τ ∗}. Putting all of this

together implies that we have a global maximum at τ = τ ∗.

We now prove Theorem 3 for k = D.

Proof. First, let W∞(δ) denote welfare under the market clearing policy with τ ∗ =∞ (that

is, the mechanism under which all suboptimal trades are stored indefinitely and only efficient

trades are executed). Further, let τD,0(δ) and τD,1(δ) denote the optimal thresholds under

welfare-maximizing and profit-maximizing discriminatory market clearing, respectively. Re-

call that these functions are both increasing in δ. Further, W∞(δ) and W 0,0(δ) are con-

tinuous, increasing functions of δ and there exists δ̃ such that W∞(δ̃) > W 0,0(δ̃) because

τD,0(δ) → ∞ as δ → 1. Since τD,0(δ) ≤ τD,1(δ) < ∞ for δ ∈ [0, 1) by Corollary 2, Lemma

A2 implies that WD,1(δ) ≥ W∞(δ) for all δ ∈ [0, 1). We also have that WD,1(δ) decreases

discontinuously at points at which τD,1(δ) increases (again, by Lemma A2) and increases

continuously in δ at all points at which τD,1(δ) is constant (that is, the underlying market

clearing policy does not vary). It immediately follows that there exists δD ≤ δ̃ such that

WD,1(δD) = W 0,0(δD) and WD,1(δ) > W 0,0(δ) for δ > δD.
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Online Appendices

B Markov decision process methodology

In Section 3 we used Markov decision process techniques to determine the allocation rules

for the class of Bayesian optimal mechanisms with binary type spaces. In this appendix we

illustrate the flexibility of this methodology by considering a variety of extensions. First,

we characterize the class of Bayesian optimal mechanisms with the general discrete type

spaces. We then consider various constraints imposed on the designer by deriving the optimal

mechanisms under uniform market clearing and fixed frequency market clearing, which were

introduced in Section 5.

B.1 General discrete types

We now show how the Markov decision process analysis from Section 3 generalizes to the

type spaces V = {v1, . . . , vn} and C = {c1, . . . , cm} with vi < vi+1 and cj < cj+1 introduced

in Section 2. The state space of the Markov decision process is now X = Zn+m
≥0 with typical

state x = (xB1 , . . . , x
B
n , x

S
1 , . . . , x

S
m), where xBi denotes the number of buyers that reported to

be of type vi and xSj denotes the number of sellers that reported to be of type cj. We again

let X t ∈ X denote the state of the market after the arrival of period t agents. Next, letting

Ax denote the set of actions available in state x we have Ax = {(aB1 , . . . , aBn , aS1 , . . . , aSm) ∈

Z≥0 : aBi ≤ xBi ∀i, aSj ≤ xSj ∀j}. We again set A = ∪x∈XAx and let At denote the action

taken by the designer in period t ∈ N.

Let eBi ∈ Zn+m denote the unit vector with a one in the ith component and let eSj ∈ Zn+m

denote the unit vector with a one in the (n+ j)th component. Letting Pa(x,x′) denote the

probability that X t+1 = x′, given X t = x and feasible At = a, we have Pa(x,x′) =

f(vi)g(cj)1(x′ = x − a + eBi + eSj ). It remains to define the reward function given some

action a. We first introduce the inverse demand function associated with action a which,

for i ∈ {1, . . . , n} and k ∈ {
∑n

`=i+1 a
B
` + 1, . . . ,

∑n
`=i a

B
` }, is given by

Da(k) = Φα(vi),

as well as the inverse supply function associated with action a which, for i ∈ {1, . . . ,m} and
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k ∈ {
∑i−1

`=1 a
S
` + 1, . . . ,

∑i
`=1 a

S
` }, is given by

Sa(k) = Γα(ci).

Letting N = min
{∑n

i=1 a
B
i ,
∑m

j=1 a
S
j

}
, the reward r(a) associated with implementing action

a is then given by

r(a) =
N∑
k=1

(Da(k)− Sα(k))1(Dα(k) ≥ Sa(k)).

Thus, we have a Markov decision process 〈X ,A, P, r, δ〉. Since the state space X is countable,

the feasible action sets Ax are finite for all states x and the reward function is deterministic,

a stationary deterministic optimal policy exists and is characterized by the appropriate

Bellman equation (see, for example, Theorems 6.2.6 and 6.2.10 of Puterman (1994)). In

particular, we have

V D(x) = max
a∈Ax

{
r(a) + δ

n∑
i=1

n∑
j=1

Pa(x′,x− a+ eBi + eSj )V D(x− a+ eBi + eSj )

}

= r(π∗(x)) + δ
n∑
i=1

n∑
j=1

Pπ∗(x)(x
′,x− π∗(x) + eBi + eSj )V D(x− π∗(x) + eBi + eSj ).

The optimal policy π∗ induces an order book Markov chain with positive recurrent states

which we denote by Y . There is an increase in market thickness under policy π relative to

policy π′ if Y(π′) ⊂ Y(π).

In general, it may be optimal to store infeasible trades. However, we assume that as soon

as the state is such that a given agent will never trade under the optimal policy, that agent

immediately leaves the market without trading. This assumption ensures that the order book

Markov chain is stationary. For example, assuming that (v1, cm) trades are infeasible in the

sense that v1 < cm (which is needed so that the optimal policy does not merely stipulate

that every pair is immediately cleared from the market) agents that form such pairs will be

immediately cleared from the market. Provided there exist feasible trading partners for all

other types, it may be optimal to store all other types of trading pairs in the order book.

Theorem B1. The optimal market clearing policy can be implemented using a P-IC and

P-IR mechanism.
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Proof. The allocation rule induced by the optimal market clearing policy π∗ is unique up to

the queueing protocol (which is a tie-breaking rule that does not affect the objective function

αR+ (1− α)W of the designer). So fix any queueing protocol and the associated allocation

rule. For the incentive constraints, it suffices to show that in any period t the allocation rules

qBt and qSt are increasing and decreasing respectively. For any i ∈ {1, . . . , n − 1} consider

the arrival of a buyer of type vi in period t and fix any sample path on which that buyer

trades in period T ≥ t. Now suppose we replace the buyer of type vi with a buyer of type

vi+1 on this sample path. Given that by assumption it is optimal for the buyer of type vi to

trade in period T , it can only be optimal for a buyer of type vi+1 to trade in some period

s ∈ {t, . . . , T}.39 So on the fixed sample path the expected discounted allocation of the

buyer of type vi+1 weakly exceeds that of the buyer of type vi. Summing over all possible

sample paths we have q(vi+1) ≥ q(vi). A similar argument applies to sellers.

Proposition B1. For any x, V D(x) is increasing in vi for any i ∈ {1, . . . , n} and decreasing

in cj for any j ∈ {1, . . . ,m}. Moreover, letting V D and V̂ D be the value functions associ-

ated with distributions F and F̂ respectively, satisfying F̂ (vi) ≤ F (vi) for all i with strict

inequality for some, we have V̂ D ≥ V D. Likewise, letting V D and V
D

be the value functions

associated with distributions G and G respectively, satisfying G(cj) ≥ G(cj) for all j with

strict inequality for some, we have V
D ≥ V D.

Proof. We start by noting that to prove each of the desired results for the payoff of the

designer, it suffices to prove the results for the value function V D(x) for each x. Suppose

there is an increase in vi. Holding the initial optimal policy fixed, this increases the payoff of

the designer since any trade involving a buyer of type i now yields a higher reward. Under

the new optimal policy the designer’s payoff can only increase further, showing that an

increase in vi increases the payoff of the designer. A similar argument applies for a decrease

in cj. Finally, given any sample path, replacing the type of any buyer with some a higher

type increases the payoff of the designer. Hence, an increase in F (in the sense of first-order

39Conditional on the buyer of type vi+1 optimally remaining until period T on the fixed sample path, if it
is optimal to clear a buyer of type vi in period T it must also be optimal to clear a buyer of type vi+1 (since
any trade involving the vi+1 buyer is more costly to store and has lower rematching potential). However, it
may be optimal to clear the buyer of type vi+1 in some earlier period.
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stochastic dominance) leads to an increase in the designer’s payoff. A similar argument

applies to a decrease (in the sense of first-order stochastic dominance) in G.

For our main comparative statics results (specifically Corollary 2 and Theorem 3, which

compare outcomes under different objectives) to generalize, a new condition, which we call

dynamic regularity (see (5)), is sufficient whereas Myerson’s regularity condition is not.

Dynamic regularity ensures that market makers who place a higher value on extracting rent

always receive a higher payoff from rematching traders. Thus, if an efficiency-targeting

market maker chooses to wait to clear the market in a particular state, so does a profit-

maximizing market maker. As in static settings, Myerson’s regularity condition is sufficient

for pointwise maximization to be implementable in an incentive compatible way. However,

in a dynamic setting, it no longer suffices for rent extraction and efficiency to be isomorphic

in the sense that the profit-maximizing market maker allocates in the same way as the

efficiency-targeting market maker except that his allocation is based on virtual rather than

on true types: without dynamic regularity, a profit-maximizing designer may have all sorts

of interests in “reshuffling” trades in a dynamic setting. Dynamic regularity guarantees that

the isomorphism extends.

Proposition B2. Under discriminatory market clearing with type spaces that satisfy dy-

namic regularity, market thickness is increasing in α.

Proof. Under dynamic regularity we have, for i ∈ {1, . . . , n− 1} and j ∈ {2, . . . ,m},

Φ(vi+1)− Φ(vi) > vi+1 − vi and Γ(cj)− Γ(cj−1) > cj − cj−1

which immediately implies that, for i, i′ ∈ {1, . . . , n} with i > i′, j, j′ ∈ {1, . . . ,m} with

j > j′ and α′ > α,

Φα′(vi)− Φα′(vi′) > Φα(vi)− Φα(vi′) and Γα′(cj)− Γα′(cj′) > Φα(cj)− Φα(cj′).

Thus, if there is an increase in α then it becomes less costly to store trader pairs (since

the function Φα is decreasing in α and the function Γα is increasing in α) and the relative

benefits of rematching pairs increases.
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Finally, our results regarding indirect taxation also generalize because under general

discrete type spaces, it is still the case that specific taxes distort the relative value of trades

while ad valorem taxes do not.

B.2 Uniform market clearing with binary types

Under uniform market clearing, the state space, transition probabilities and reward function

of the associated Markov decision process are the same as those of the Markov decision

process derived in Section 3.1 for discriminatory market clearing. Uniform market clearing

only affects the set of actions available to the designer in a given state. Let A′x denote the

set of actions available to the designer in state x under uniform market clearing. Under

discriminatory market clearing we had Ax = {(aE, aS) : aE, aS ∈ Z≥0, aS ≤ xE, aS ≤ xS}.

However, for the uniform market clearing case the designer can elect only to wait or clear

the entire market, implying that A′x = {(xE, xS), (0, 0)}. Setting A′ = ∪x∈XA′x, we need to

determine the optimal policy of the Markov decision process 〈X ,A′, P, r, δ〉. Recall that P

specifies the transition probabilities of the Markov chain, r(x) specifies the reward earned

by the designer when action a = x is implemented and δ is the discount factor. Here, P , r

and δ are the same for both discriminatory and uniform market clearing.

In general, we will use the term threshold policies to describe any class of policies which

can be summarized by one-dimensional sufficient statistics, the thresholds τ . As was the case

with discriminatory market clearing, under uniform market clearing we can restrict attention

to a class of threshold polices. We then use the structure that threshold policies impose on

the market order book to prove that the optimal policy is a threshold policy.

Definition B1. Given a threshold τ ∈ N, the associated threshold policy πτ of the Markov

decision process 〈X ,A′, P, r, δ〉 is such that

πτ (x) = 0 if r(x) ≤ τ and πτ (x) = x if r(x) > τ.

Under a threshold policy the market maker stores both efficient and suboptimal pairs up

to a threshold value of τ . We now describe the associated structure of the order book Markov

chain {Y t}t∈N, as illustrated in Figure 8. One can think of the number of stored efficient pairs

as the level of the Markov chain and the number of stored suboptimal trades as the phase of

60



Level 0 1 2 · · · k2 k2 + 1 k2 + 2 · · · k1 − 1 k1 k1 + 1 k1 + 2 · · · k0

Level 1 1 2 · · · k2 k2 + 1 k2 + 2 · · · k1 − 1 k1

...
...

...

Level yE 1 · · · kyE

Level ∅ 0

Figure 8: The structure of the quasi-birth-death under the threshold policy with threshold
τ . Dashed arrows are used to denote some transitions to and from the state 0.

the Markov chain within that level. We include an additional level for the state 0, denoted

by level ∅. Under the threshold policy τ , yE = bτc is the maximum number of efficient pairs

that can be stored. For i ∈ {0, 1, . . . , yE}, the maximum number of suboptimal pairs stored

at level i is ki = b(τ − i)/∆αc. Therefore, the order book Markov chain is a level-dependent

quasi-birth-death process (see, for example, Latouche and Ramaswami (1999)). Similarly to

the case of discriminatory market clearing, we can exploit the structure of the order book to

show that the optimal market clearing policy is a threshold policy.

Theorem B2. Under uniform market clearing, the optimal market clearing policy is a

threshold policy. It can be implemented using a P-IC and P-IR mechanism.

The proof of Theorem B2 proceeds in a similar manner to the proof of Theorem 1, using

a dynamic programming characterization of the optimal threshold τ ∗. Algorithm C2 in

Online Appendix C uses the optimal stopping condition derived from the Bellman equation

to compute τ ∗.

Proof. Since the state space X is countable, the feasible action sets A′x are finite for all
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states x and the reward function is deterministic, a stationary deterministic optimal policy

exists (see, for example, Theorem 6.2.10 of Puterman (1994)). Let π∗ denote any optimal

policy of the Markov decision process 〈X ,A′, P, r, δ〉. The optimal policy must clear the

market whenever it is in a state of the form (xE, 0), with xE ∈ N. Furthermore, given any

fixed number of stored efficient pairs, as the number of stored suboptimal pairs diverges to

infinity, the expected time until each additional stored pair is rematched diverges to infinity.

Therefore, the benefit of storing each additional suboptimal pair converges to zero, while

the immediate reward for clearing a suboptimal pair from the market is fixed at ∆α. Thus,

for a given number of stored efficient pairs, the optimal policy cannot allow an unbounded

number of identical suboptimal pairs to accumulate.

It follows that for every x∗E ∈ Z≥0 there exists a state x∗ = (x∗E, x
∗
S) such that π∗(x∗) = 0

and π∗(x∗E, x
∗
S + 1) = (x∗E, x

∗
S + 1). We call such states cutoff states. Denote the expected

present value of being in the cutoff state x∗ under the optimal policy by V U
π∗(x

∗), the total

expected discounted reward earned by the designer in the subsequent period. It is finite

because an unbounded number of pairs cannot accumulate under π∗ and we are considering

a discounted process. For any state x, the benefit of waiting to clear the market is increasing

in xS and the benefit of clearing is increasing in r(x). Since r(x∗E + 1, x∗S) > r(x∗) and

r(x∗E + 1, x∗S − 1) > r(x∗) it follows that if π∗(x∗E, x
∗
S + 1) = (x∗E, x

∗
S + 1), we must also have

π∗(x∗E + 1, x∗S) = (x∗E + 1, x∗S) and π∗(x∗E + 1, x∗S − 1) = (x∗E + 1, x∗S − 1). Finally, let V U
π∗(0)

denote the expected present value of being in the state 0 under the optimal policy. The

Bellman equation which characterizes V U
π∗(x

∗) is then given by

V U
π∗(x

∗) = δ
[
w2(r(x∗) + 1 + V U

π∗(0)) + w(1− w)(r(x∗) + ∆α + V U
π∗(0))

+w(1− w)(r(x∗) + 1−∆α + V U
π∗(0)) + (1− w)2V U

π∗(x
∗)
]
. (25)

If the market is cleared in state x∗, the payoff is the immediate reward r(x∗) plus the

expected present value of being in the state 0. By the principle of the optimality of dynamic

programming,

V U
π∗(x

∗) ≥ r(x∗) + V U
π∗(0). (26)

Notice that the right-hand sides of (25) and (26) depend directly on x∗ only through r(x∗).

Replace r(x∗) with τ ∗ in (25) and (26) and suppose (26) holds with equality. Then, for
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every cutoff state x∗, r(x∗) ≤ τ ∗. Using the definition of τ ∗, substituting (26) into (25) and

rearranging, it can be shown that τ ∗ satisfies

τ ∗ + V U
π∗(0) =

δw

1− δ
. (27)

Thus, for any state x ∈ X \ {(xE, 0) : xE ∈ N}, the market should be cleared if and only if

x∗E + ∆αx
∗
S > τ ∗. Therefore, the optimal policy π∗ is a threshold policy, where the threshold

τ ∗ ∈ R≥0 is characterized by (27).

We now show that the optimal threshold policy can be implemented with a P-IC and

P-IR mechanism. Start by constructing a direct allocation rule from the optimal market

clearing policy. Let ĥ ∈ {v, v}N×{c, c}N be a realization of the report process and ĥt denote

ĥ restricted to its first 2t components. Let {τ ĥj }j∈N denote the subset of periods such that

the designer optimally chooses to clear the market under π∗, given ĥ and set τ ĥ0 = 0 for

convenience. For all i ∈ N there exists j ∈ N such that τ ĥj−1 < i ≤ τ ĥj . The period τ ĥj history

of reports can be mapped to X
τ ĥj

, the state of 〈X ,A′, P, r, δ〉 in period τ ĥj . Then if buyer

i is part of an efficient or a suboptimal pair in period τ ĥj we simply set QBi

τ ĥj
(ĥ

τ ĥj
) = 1 and,

for all k ∈ N \ {τ ĥj }, Q
Bi
k (ĥk) = 0. Otherwise, we set QBi

k (ĥk) = 0 for all k ∈ N. Proceed

analogously for seller i.

Next, we verify the incentive compatibility constraints qBi(v, ĥi−1) ≥ qBi(v, ĥi−1) and

qSi(c, ĥi−1) ≥ qSi(c, ĥi−1). These constraints hold under π∗ since the arrival of a v or c agent

cannot increase the expected number of periods until the next market clearing event (the

Markov chain moves to a state with fewer expected transitions between it and the 0 state)

and v and c agents are more likely to trade as part of any given market clearing event (these

agents have rematching priority over v and c agents).

An analogous result to Proposition 3, specifically that the designer’s objective function

is increasing in w and ∆0, and τ ∗ is decreasing in ∆0, immediately follows from the dynamic

programming characterization.40 Similarly, market thickness, as measured by the optimal

threshold τ ∗, is increasing in α.

40Notice that τ∗ is no longer increasing in w(1− w) since the order book now contains both efficient and
suboptimal pairs.
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General discrete type spaces Note that we can repeat our analysis in the previous sec-

tion for uniform market clearing and show that Theorem B1, Proposition B1 and Proposition

B2 also hold. The proofs of each of these results for discriminatory market clearing did not

rely on the specific structure of the optimal market clearing policy, it exploited general prop-

erties of the optimal policies of the Markov decision processes. Therefore, to prove these

results it suffices to modify the action space of the general Markov decision process from

Section B.1 so that it applies to uniform market clearing.

B.3 Fixed frequency market clearing with binary types

Under fixed frequency market clearing, the state space of the order book Markov chain is

given by {(yE, yS) : 0 ≤ yE + yS ≤ τ, yE, yS ∈ Z2
≥0}. If the market is cleared after τ periods,

then both the number of buyers of type v present and the number of sellers of type c present

follow a binomial distribution with τ trials and probability of success p, and likewise for the

numbers of buyers of type v and sellers of type c present. Thus, the market maker’s expected

discounted payoff is given by

V F
τ =

δτ−1

1− δτ
τ∑
j=0

τ∑
k=0

(
τ

j

)(
τ

k

)
(min{j, k}+ |j − k|∆α)wj+k(1− w)2τ−j−k. (28)

Here, the market maker can only determine the frequency at which markets are cleared.

Thus, the the optimal market clearing policy is trivially a threshold policy, where the market

is cleared every τ ∗ periods. Algorithm C3, which can be found in Online Appendix C, uses

this formula to compute the optimal market clearing threshold τ ∗.

Once again, we see that the designer’s objective function is increasing in p and ∆0, τ ∗ is

decreasing in ∆0 and market thickness, as measured by the optimal threshold τ ∗, is increasing

in α. We also have the following result.

Corollary B1. Under fixed frequency market clearing, the optimal market clearing policy is

a threshold policy. It can be implemented using a P-IC and P-IR mechanism.

Proof. Under fixed frequency market clearing, threshold policies are trivially optimal. We

can repeat the procedure from the proof of Theorem B2 in order to construct a direct

allocation rule for fixed frequency market clearing. However, in this case the set of optimal
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market clearing times is deterministic and given by {iτ ∗}i∈N. The constraints qBi(v) ≥ qBi(v)

and qSi(c) ≥ qSi(c) must then hold since v and c agents have rematching priority over v and

c agents.

General discrete type spaces A threshold policy is trivially optimal under fixed-frequency

market clearing and the state space of the order book Markov chain is Y = {0, 1, . . . , τ ∗}n+m.

Furthermore, just as we had for uniform market clearing, Theorem B1, Proposition B1 and

Proposition B2 also hold in this case.

Gains from increased sophistication

We are now in a position to show that the main results from Section 5 (Theorems 2 and 3)

generalize to general discrete type spaces.

Theorem B3. Suppose that c1 > vn. In the δ → 1 limit, the relative gains from sophistica-

tion are given by

lim
δ→1

GD,U
α (δ) = lim

δ→1
GU,F
α (δ) = 0 < lim

δ→1
GF,0
α (δ).

Proof. Let F (−1) and G(−1) denote the respective quantile functions of the distributions F

and G. Then in the limit as δ → 1, per period welfare under discriminatory, uniform and

fixed frequency market clearing converges to∫ 1

0

(
F (−1)(1− x)−G(−1)(x)

)
1(F (−1)(1− x) ≥ G(−1)(x)) dx.

Under the assumption that c1 > vn per period welfare under instantaneous market clearing

is given by the strictly lower value

n∑
i=1

n∑
j=1

(vi − cj)1(vi ≥ cj)f(vi)g(cj)

and we immediately have the desired result.

Theorem B4. Suppose that the distributions F and G are dynamically regular. Then for

all k ∈ {D,U, F} there exists δk ∈ [0, 1) such that W k,1(δk) > W 0,0(δk) for all δ > δk.

As was done previously, we formally prove the theorem for the k = D case. The other

cases are similar.

65



Proof. First, let W∞(δ) denote welfare under the market clearing policy where all suboptimal

trades are stored indefinitely and only efficient trades are executed. Further, let YD,0(δ) and

YD,1(δ) denote the set of positive recurrent order book states under welfare-maximizing and

profit-maximizing discriminatory market clearing, respectively. Recall that these sets are

both increasing in δ. Further, W∞(δ) and W 0,0(δ) are continuous, increasing functions of

δ and there exists δ̃ such that W∞(δ̃) > W 0,0(δ̃) because YD,0(δ) → Zn+m
≥0 as δ → 1. By

Proposition B2 and our dynamic regularity assumption we have YD,0(δ) ⊆ YD,1(δ) ⊂ Zn+m
≥0

for δ ∈ [0, 1), which in turn implies that WD,1(δ) ≥ W∞(δ) for all δ ∈ [0, 1) (see Lemma

A1, which applies here because all of the results for binary type spaces used in this proof

have now been generalized). It immediately follows that there exists δD ≤ δ̃ such that

WD,1(δ) > W 0,0(δ) for δ > δD.

C Algorithms

C.1 Discriminatory Market Clearing

We begin by describing an algorithm which may be used to compute the optimal threshold

τ ∗ under discriminatory market clearing. This algorithm exploits the fact that for all i ∈

{0, 1, . . . , τ}, V D
τ (i) is increasing in τ for τ ∈ {0, 1, . . . , τ ∗−1}, decreasing in τ for τ > τ ∗+1

and attains a global maximum at τ = τ ∗ (see Lemma A2).

Algorithm C1. Begin with the threshold policy characterized by τ = 1 and solve the linear

system defined in (13). If V D
1 (1) > ∆α+V D

1 (0), proceed to step 2. Otherwise, return τ ∗ = 0.

At step i,

1. Solve (13) with τ = i to determine V D
i (i) and V D

i (i− 1).

2. If V D
i (i) > ∆α + V D

i (i− 1), proceed to step i+ 1. Otherwise, return τ ∗ = i− 1.

Since τ ∗ is finite, this algorithm must eventually terminate. Algorithm C1 is a simple

example of policy iteration. We start with the policy τ = 1 and compute the associated

state values. We proceed to iterate over a set of test policies until the optimal policy is

reached. With each iteration the test policy is updated based on the optimality condition

for the values computed for that test policy. Policy iteration is simple in this case because
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the set of test policies (which must be the set of all possible optimal policies) has already

been refined to the set of threshold policies by Theorem 1.

C.2 Uniform Market Clearing

We next define a similar algorithm that applies to uniform market clearing. However, first we

must derive the Bellman equation that characterizes the optimal threshold τ ∗. We start by

introducing the notation Z = {(0, 0), (0, 1), (1, 0), (1,−1)}, which captures the set of possible

changes to the state y = (yE, yS) following the next arrival. Introducing this notation is

convenient because it allows us to sum over all possible transitions of the order book Markov

chain. Define the function PZ : Z → [0, 1] by

PZ(1, 0) = w2, PZ(0, 1) = w(1− w), PZ(1,−1) = w(1− w) and PZ(0, 0) = (1− w)2,

which gives the probability of each of the changes captured in Z. For example, (1,−1)

corresponds to the arrival of a suboptimal pair that results in a stored suboptimal being

rematched to create an efficient pair. This occurs with probability w(1 − w), provided

yS > 0.

Let V U
τ (yE, yS) denote the expected discounted present value of being in state (yE, yS)

under the threshold policy with threshold τ . If the state of the market is (yE, 0) for some

yE > 0, the market maker will immediately clear and earn a reward of yE plus the expected

present vale of being in state 0. Therefore, we have

V U
τ (yE, 0) = yE + V U

τ (0). (29)

Next suppose the market is in any state y = (yE, yS) such that yS > 0 and r(y) < τ , where

r(yE, yS) = yE + yS∆α denotes the immediate reward from clearing the market. Under the

threshold policy τ , the market maker will earn an immediate reward only when the market

reaches a state y′ such that r(y′) ≥ τ . Consequently,

V U
τ (y) = δ

∑
z∈Z

PZ(z)
[
V U
τ (y + z)1(r(y + z) < τ)

+ (r(y + z) + V U
τ (0))1(r(y + z) ≥ τ)

]
. (30)

Any threshold policy is characterized by this linear system. As with discriminatory market

clearing, this Bellman equation can be used to to derive a stopping condition satisfied by τ ∗.
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By the proof of Theorem 1, the optimal threshold τ ∗ is such that for any x∗E > 0 there

exists a cutoff state x∗ = (x∗E, x
∗
S) with

V U
τ∗(x

∗) > r(x∗) + V U
τ∗(0) and V U

τ∗(x
∗
E, x

∗
S + 1) ≤ r(x∗E, x

∗
S + 1) + V U

τ∗(0).

That is, a cutoff state is such that the market is optimally cleared if an additional identical

suboptimal pair arrives. In the proof of Theorem 2, we show that this implies that the market

is then also optimally cleared if an efficient or a non-identical suboptimal pair arrives. Since

τ ∗ applies to all cutoff states, to compute τ ∗ it suffices to find a single cutoff state. Algorithm

C2 determines τ ∗ by computing the cutoff state (0, x∗S) using the aforementioned stopping

condition.

Algorithm C2. Begin with the threshold policy characterized by τ = ∆α, where ∆α is the

value of a single suboptimal trade. Solve the linear system defined in (29) and (30). If

V U
τ (0, 1) ≥ ∆α + V U

τ (0), proceed to step 2. Otherwise, return τ ∗ = 0. At step i,

1. Solve (29) and (30) with τ = i∆α to determine V U
τ (0, i) and V U

τ (0).

2. If V U
τ (0, i) ≥ i∆α + V U

τ (0), proceed to step i+ 1. Otherwise, set τ ′ = (i− 1)∆α.

If τ ′ + ∆α < 1, return τ ∗ = τ ′. Otherwise, for all j ∈ N such that τ ′ + ∆α < j,

1. Set k = b(τ ′ + ∆α − j)/∆αc and solve (29) and (30) with τ = j + k∆α to determine

V U
τ (j, k) and V U

τ (0).

2. If V U
τ (k, j) ≥ j + k∆α + V U

τ (0) update τ ′ = j + k∆α.

Return τ ∗ = τ ′.

Note that depending on the value of δ, Algorithm C2 may not be the most economical

algorithm. For example, for larger value of δ, a computationally more efficient algorithm

could proceed by initially increasing the candidate threshold by increments of 1 and then

increasing the candidate threshold by increments of ∆α.
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C.3 Fixed Frequency Market Clearing

Finally, we have an algorithm to compute τ ∗ under fixed frequency market clearing.

Algorithm C3. Begin with the threshold policy characterized by τ = 2 and compute W F (2)

and W F (1) using (28). If W F (2) ≥ W F (1) proceed to step 2. Otherwise, return τ ∗ = 1. At

step i,

1. Compute W F (i) using (28).

2. If W F (i) ≥ W F (i− 1), proceed to step i+ 1. Otherwise, return τ ∗ = i− 1.

D Further extensions

We have already considered several extensions of the analyzes in Sections 3, 4 and 5 in

this appendix, including general discrete type spaces, uniform market clearing and fixed

frequency market clearing. We now briefly discuss several extensions of the arrival process.

D.1 Unpaired arrivals

Under discriminatory market clearing, the assumption that buyers and sellers arrive in pairs

can easily be relaxed. To see this, suppose that in every period a buyer of type v (v) arrives

with probability w1(w2), and with probability 1−w1−w2 no buyer arrives, and likewise for

sellers.41 The designer will optimally store an unbounded number of unpaired efficient types

and will store identical suboptimal pairs up to a threshold which can be computed using

the methodology described in Section 3.1. Similarly for uniform and fixed frequency market

clearing.

D.2 Continuous time

The results of this paper immediately generalize to the case in which buyers and sellers arrive

according to a Poisson process. If the intensity of the arrival process is η then the expected

inter-arrival time is 1/η and all of our results generalize if we simply use a discount factor of

δ1/η. We can also consider the case in which pairs of buyers and sellers arrive according to a

41That is, in every period a seller of type c (c) arrives with probability w1 (w2), and with probability
1− w1 − w2 no seller arrives.
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more general renewal processes. Let A(s) denote the residual lifetime of the renewal process

so that if an arrival occurred at time t = 0 and a second arrival has not occurred by time

t = s, then A(s) is the time between s and the next arrival. If the renewal process exhibits the

‘new is better than used in expectation” property (that is, if E [A(s)] is decreasing in s; see,

for example, Barlow and Proschan (1975)) then our methodology immediately generalizes by

simply using a discount factor of δE[A(0)]. If the renewal process does not have this property,

this is essentially equivalent to considering a time-varying discount factor in our baseline

model.

D.3 Group Arrivals

By appropriately updating the transition probabilities of the underlying Markov decision

processes, our baseline model could easily accommodate the arrival of groups of agents in

each period. This would essentially enable us to consider non-uniform arrival processes which

would provide a natural model for markets in which large numbers of buyers and sellers tend

to arrive together.42

D.4 Multi-Unit Traders

Within our symmetric binary setting it is possible to extend the model to multi-unit traders

without sacrificing its amenability to the mechanism design techniques. Specifically, assume

that each buyer demands k ∈ N units and each seller has the capacity to supply k units. A

buyer’s type θBt ∈ {0, . . . , k} is the number of units for which she has a marginal value of

v while her marginal value for any of the additional units max{k − θBt , 0} is v. Similarly,

seller’s type θSt ∈ {0, . . . , k} is the number of units for which he has a marginal cost of c while

his marginal cost for producing any of the additional units max{k−θSt , 0} is c. Assume that

buyer types are distributed according to a discrete distribution F with supp(f) ⊂ {0, . . . , k}

and sellers types are distributed according to some discrete distribution G with supp(G) =

{0, . . . , k}.43 The arrival of the period t buyer and seller is now equivalent to the arrival of

42For example, consider the allocation of university places. Here, students and universities arrive at the
market simultaneously prior to the start of the new academic year, essentially creating a static matching
problem.

43If, for example, buyers valuations for each unit are independent and equal to v with probability p and v
with probability 1− w we obtain a binomial type distribution Bn(k,w).
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min{θBt , θSt} efficient pairs, |θBt − θSt | suboptimal pairs and k −max{θBt , θSt} pairs which

cannot trade. Thus, this problem is a special case of the group arrivals extension discussed

above.
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