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Abstract

Non-market clearing prices that induce rationing and open scope for resale–that
sellers actively attempt to prevent–are a persistent feature of reality but have proved
puzzling for theory. Why, one wonders, would the seller not set market clearing prices
in the first place, thereby increasing revenue and preempting resale? We first show that
the phenomenon of non-market clearing pricing together with the prevention of resale is
consistent with optimal behaviour by a monopoly seller. Selling a given quantity with
non-market clearing prices is optimal if and only if the revenue function is convex at
this quantity. The seller is always harmed by resale. Moreover, we provide conditions
such that consumers are also harmed by resale, and we derive the optimal pricing and
level of production for the seller when resale in the presence of non-market clearing
prices cannot be avoided. Extending the model to allow for vertically differentiated
goods, we show that a non-concave revenue function can give rise to goods of different
qualities being bunched and sold at a uniform price and to underpricing and hence
random rationing.
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1 Introduction

Would a profit-maximizing seller ever deliberately set non-market clearing prices? Would the

same seller then be concerned about resale that reduces the inefficiency resulting from the

random allocation and try to prevent it? Why, economic reasoning and intuition suggest,

would the seller not set market clearing prices in the first place? Thereby it could both

preempt the emergence of a resale market and make a larger profit because it sells at a

higher price.

Yet, this is precisely what happens, for example, in the events industry. There, tickets

are regularly sold at a menu of prices which induce excess demand, random rationing and

scope for brokers and speculators to profit from resale, much to the chagrin of the events

organizers who dislike the ensuing resale and try to prevent it. As noted by Becker (1991),

this poses no small conundrum. Perhaps the sellers are not profit-maximizing? Or they care

about bringing in low-income audiences, which improves the ambience and thereby increases

the willingness-to-pay of high-income customers? Maybe the sellers are afraid of jacking

up prices for fear of looking too greedy, or they genuinely care for lower income, lower-

willingness-to-pay customers? Of course, it could also be that sellers imperfectly observe

demand prior to committing to a price and have an interest in ensuring that the event is

sold out, for example, because the artists that play (and perhaps the audience as well) have a

preference for sold-out events. Possibilities of plausible explanations that go beyond simple,

some might say simplistic, economic theory obviously abound.

A similarly puzzling feature, also frequently observed in the event industry, is that goods

of vertically different qualities are bunched together and sold at a single price. For example,

seats in a sports stadium are often sold in coarse tiers, with seats in the same price category

exhibiting considerable differences in their qualities. As a case in point, the more than

fourteen thousand seats at Rod Laver Arena at the Australian Open or sold in four (or,

including court side seating, five) different categories only. This raises the question as to

why the seller does not use a finer price schedule and a less coarse categorization of seats.

Again, there is an abundance of hypotheses that can be put forth to explain this seemingly

stark departure from optimality, perhaps the most popular one being that some kind of
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transaction costs prevent the seller from creating and managing different price and seating

categories.

In this paper, we provide a different explanation. We show that standard theory has got

it exactly right and that the seemingly compelling economic logic invoked in the introductory

paragraph is simply wrong. Beyond private information, no additional transaction costs are

invoked to explain coarse pricing. In particular, we show that setting non-market clearing

prices and prohibiting resale is part of the optimal strategy for a monopoly under standard

assumptions when one does not restrict the monopoly to set market clearing prices and one

does not assume that revenue under market clearing pricing is a concave function of quantity.

All our other assumptions are standard in monopoly pricing. We show that increasing

marginal costs and non-concave revenue are necessary and sufficient to make rationing part of

the uniquely optimal strategy for the monopoly.1 Of course, strictly (and steeply) increasing

marginal costs are the appropriate assumption for organizers of entertainment events because

there typically a fixed capacity is being allocated.

In a nutshell, non-market clearing pricing and random rationing allow the monopoly to

serve low-value consumers whose marginal revenue is high with the same probability as it

serves higher-value consumers whose marginal revenue is low. Non-market clearing pricing

and random rationing render the monopoly’s revenue function concave in situations where

under market clearing pricing it is not. This theory brings to light not only an explanation

for consistently observed phenomena but also a novel source of inefficiency of monopoly

behaviour—random allocations. According to to this theory, the reason why prices are not

market clearing is not that the monopoly cares for consumers with lower willingness to pay,

but simply that it maximizes profits.

In practice, a monopolist can implement this scheme by first selling the tickets at a high

price before having a sale during which the remaining tickets are rationed at a low price.

Alternatively, a monopolist can simultaneously sell “premium” and “mass-market” tickets.

The premium tickets are sold at a high price and need not be differentiated from the mass

market tickets in any other way. Our model thus captures situations in which the primary

1If marginal costs are constant, then rationing can be part of the optimal strategy but when it is it is
neither uniquely optimal nor generic. With strictly increasing marginal costs, uniqueness and genericity
obtain.
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motivation for purchasing premium tickets—the very reasons they are premium and higher

priced—is to guarantee access by avoiding the lottery associated with the “cheap” mass

market tickets.

Importantly, our insights carry over to situations in which vertically differentiated vari-

ants of the good are sold at different prices under market clearing pricing (for example, front

row or court side seats, and so on). Interestingly, in this case, profit-maximization under

a non-concave revenue function may require the seller to lump together goods in vertically

differentiated categories into a single category that is sold at a uniform price, which, as

mentioned, is also a persistently observed phenomenon in the events industry.

Of course, because rationing is random and inefficient, it offers gains from trade and

thereby scope for a resale market and for entry by profit-seeking intermediaries. Not sur-

prisingly, rationing, or “underpricing”, goes empirically hand in hand with resale. As resale

transaction prices are regularly observed that are far above the initial sale price (or face

value) of a ticket, such resale transactions raise, also not surprisingly, the ire of the initial

sellers and the fundamental question of why rationing that gives rise to resale can possibly

be in the interest of the seller. As Bhave and Budish (2018) put it (emphasis in the original),

“the true puzzle is the combination of low prices and rent seeking by speculators due to an

active secondary market.”

Motivated by this, we also extend our model and analysis to account for the possibility

of resale, confirming some of the preceding observations while qualifying others. In partic-

ular, we show that resale harms the initial seller, thereby corroborating the negative views

regarding resale expressed by initial sellers (see e.g. Miranda, 2016). In light of the multitude

of ways in which resale can be modelled, this result is remarkably general. It only requires

that the resale market constitute a (Bayes Nash) equilibrium and that this equilibrium is

anticipated by the seller and all the agents in the initial allocation process that the seller

controls. That resale harms the seller then follows from a revealed preference argument: In

the world without resale, it could choose the same allocation probabilities that obtain in the

equilibrium with resale. Because it is strictly optimal for him to choose different probabilities

than those that obtain with resale, it follows that resale harms the seller.

We also show that resale transaction prices are necessarily above the lower of the initial
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prices (simply because all initial buyers—including the lottery winners— have values above

that price), and we provide simple conditions—random-proposer take-it-or-leave-it offers and

a matching probability sufficiently close to zero— for the highest resale transaction prices

to exceed the higher of the seller’s initial prices. Although, as mentioned, resale harms the

seller, if resale is not too effective, the seller is strictly better off by inducing rationing and

swallowing the bitter pill of having some resale transactions occurring than by setting a

uniform market clearing price. Put differently, it is perfectly consistent with our theory to

have, simultaneously, rationing, resale, and sellers’ complaining about resale. Moreover, we

show that it is possible that resale prohibitions increase total consumer surplus. Because

the seller is always harmed by resale, it is thus possible to have social and consumer surplus

increasing resale prohibition.

Assuming that resale occurs with some probability and is perfectly efficient when it

occurs, we are also able to derive the seller’s optimal strategy when the seller anticipates

that resale occurs on or off the equilibrium path. Among other things, we show that if resale

is perfectly effective it will not occur on the equilibrium path.

The remainder of this paper is organized as follows. Section 2 introduces the setup. We

analyze the monopoly problem without resale in Section 3. Resale is analyzed in Section 4.

In Section 5, we analyze the extension of the model in which the monopolist offers a menu of

vertically differentiated goods such as first-row and second-row seats and the like. Sections

6 and 7 discuss the related literature and contain the conclusions, respectively.

2 Setup

We assume that there is a continuum of consumers each with demand for one unit of the good

and denote by P (Q) the willingness to pay of the consumer with Q-th highest valuation.

We assume that P (0) is positive and finite, P (Q) is decreasing in Q, and that there is

a Q < ∞ such that P (Q) = 0. While mechanically the model and many results extend

beyond this setup in a straightfoward manner, to fix ideas, we further assume that each

buyer’s valuation v is an independent draw from an absolutely continuous distribution F (v)

with support [0, P (0)] with positive density which we denote by f(v). Letting µ = Q denote

the total mass of consumers, we thus have D(p) = µ(1 − F (p)) as the demand function for
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p ∈ [0, P (0)], and the inverse demand function is P (Q) = F−1(1−Q/µ) for any Q ∈ [0, Q].

Denote by

R(Q) = P (Q)Q

the revenue of a seller who sells the quantity Q at the market clearing price P (Q).

The standard assumption, which is almost universally maintained in economics, is that R

is concave. The typical justification for this assumption, other than it being standard, is that

it is deemed an analytic simplification that permits one to focus on the key economic insights

without cluttering the analysis with case distinctions and multiplicity of local maxima. We

have never seen it justified on the basis of empirical evidence, and we will not impose it.

With this in mind, a key take-away from this paper is that the assumption that revenue is

concave obscures important economic insights and phenomena.

Our analysis is unaffected if we allow for non-identical distributions, provided the seller

cannot distinguish consumers. All subsequent arguments then apply to a representative

consumer whose value is drawn from the aggregate distribution. Note that even if each

consumers draws their value from a distribution that gives rise to a concave revenue function,

if these distributions have non-identical supports then the aggregate distribution does not

necessarily give rise to a concave revenue function. A formal argument illustrating this point

is provided in Appendix A.1.

3 Optimal rationing

We now analyze the optimal selling mechanism and determine when rationing is optimal.

Throughout this section we will maintain the assumption that even when there is rationing,

there is no resale. Resale is analyzed in Section 4.

3.1 Selling a given quantity optimally

To accommodate the possibility of non-market clearing pricing and rationing, we assume that

the monopoly sets two prices, denoted p1 and p2, satisfying p1 ≥ p2, such that consumers

who buy at price p1 are served with probability 1 while consumers who opt to buy at price

p2 are served with strictly lower probability if p2 < p1. This is not only a simple way of
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incorporating the possibility of non-market clearing prices but as we shall see also without

loss of generality. Let Q1 be the mass of buyers who buy at price p1, Q2 be all the buyers who

are willing to buy at price p2 (which includes those who buy at p1), and Q be the quantity

the monopoly sells. Making the participation constraint for the marginal consumer bind, we

have

p2 = P (Q2),

or equivalently Q2 = D(p2). The incentive compatibility constraint for the consumer with

value P (Q1) who is indifferent between buying at the high price and being served with

probability 1 and participating in the random rationing lottery, where the price is p2 =

P (Q2), is

P (Q1)− p1 =
Q−Q1

Q2 −Q1

(P (Q1)− P (Q2)),

where Q2−Q1 is the mass of consumers participating in this lottery and Q−Q1 is the supply

allocated to these consumers. Solving for p1 yields

p1(Q,Q1, Q2) =
Q2 −Q
Q2 −Q1

P (Q1) +
Q−Q1

Q2 −Q1

P (Q2). (1)

Henceforth, we shall refer to such a selling mechanism as a lottery mechanism. We will refer

to selling the quantity Q at the market clearing price P (Q) as a posted price mechanism.

Figure 1 illustrates the equilibrium construction for a lottery mechanism.

The revenue of a firm who sells the quantity Q1 at price p1 and the quantity Q−Q1 at

price P (Q2) with Q1 ≤ Q ≤ Q2 is

Q1p1(Q,Q1, Q2) + (Q−Q1)P (Q2).

Substituting in the expression for p1(Q,Q1, Q2) and simplifying reveals that this revenue is

simply

Rα(Q1, Q2) := αR(Q1) + (1− α)R(Q2),

where α = Q2−Q
Q2−Q1

. That is, when choosing Q1 and Q2, the monopoly obtains a convex

combination of the revenue it would get if it only sold Q1 at the market clearing price P (Q1)

and the revenue it would get if it sold Q2 at P (Q2).

Intuitively, rationing—that is, choosing Q1 < Q < Q2—will pay off only if p1 > P (Q) for

otherwise it would mean selling all units at or below the market clearing price. Obviously,
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Q

P

p2
1− α

1− α

Q

p1

(Q1, P (Q1))

(Q2, P (Q2))

Figure 1: The equilibrium construction, where the probability of winning the lottery is
denoted by 1 − α. The position of Q within the interval [Q1, Q2] is such that the distance
Q−Q1 is proportional to 1− α. Similarly, the position of p1 within the interval [p2, P (Q1)]
is such that P (Q1)− p1 is proportional to 1− α.

this is dominated by selling all units at the market clearing price. To see that p1 > P (Q) is

indeed the case, recall that selling Q units using rationing pays off if and only if

R(Q) < αR(Q1) + (1− α)R(Q2).

Substituting for the revenue function and dividing by Q yields

P (Q) <

<1︷︸︸︷
Q1

Q
αP (Q1) +

>1︷︸︸︷
Q2

Q
(1− α)P (Q2) < αP (Q1) + (1− α)P (Q2) = p1.

Before we can provide a formal result that characterizes when lottery mechanisms out-

perform posted price mechanisms, we need to introduce some terminology. We say that R

is concave at Q if for any t ∈ (0, 1) and any Q1, Q2 such that (i) Q1 < Q < Q2 and (ii)

Q = tQ1 + (1 − t)Q2, we have R(Q) ≥ tR(Q1) + (1 − t)R(Q2). In other words, letting R

denote the convex hull of R, R is concave at Q if R(Q) = R(Q). Otherwise, we say that

R is convex at Q. From our previous expression for revenue, it follows immediately that

there is no point in choosing Qi 6= Q for i = 1, 2 if R is concave at Q because then R is

everywhere above the line segment connecting any two points on R. Conversely, and by the
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same argument, choosing Q1 < Q < Q2 is beneficial whenever R is convex at Q. We thus

have the following proposition.

Proposition 1. Given a quantity Q, the monopoly strictly prefers a lottery mechanism to a

posted price mechanism if and only if R is convex at the point Q. Moreover, revenue under

the optimal lottery mechanism is given by R(Q).

Combining the mechanism design arguments developed by Myerson (1981) with the

equivalence of monopoly pricing problems and optimal auctions first observed by Bulow

and Roberts (1989), we obtain an even stronger result, which we state in Theorem 1 below.

Here as elsewhere, we say that a mechanism is optimal if it is the profit-maximizing mecha-

nism for the monopoly subject to agents’ incentive compatibility and individual rationality

constraints. Theorem 1 implies that our restriction to selling mechanisms with at most two

prices is without loss of generality because whenever the monopoly prefers price posting to a

lottery (or a lottery to price posting), its preferred mechanism is actually the best mechanism

available among all incentive compatible and individually rational mechanisms

Theorem 1. Given a quantity Q, a lottery mechanism is optimal if and only if R is convex

at the point Q. Otherwise, a posted price mechanism is optimal.

Combining Proposition 1 and Theorem 1 we have that revenue under the optimal mecha-

nism is given by R(Q). This concavification procedure is equivalent to ironing the marginal

revenue function (see e.g. Myerson, 1981). As an illustration, consider the inverse demand

function

P (Q) =

{
10−Q Q ∈ [0, 6]

5.5−Q/4 Q ∈ (6, 32],
(2)

which we will use as a leading example. This function has a kink at Q = 6.2 Consequently,

the revenue function R(Q) is not globally concave. Figure 2 illustrates the revenue function

as well as its convex hull and the ironed marginal revenue function is shown in Figure 3.

Although our leading example features a kink point this is of course not necessary for there

to be a region in which lotteries are optimal. As Proposition 1 shows, this is determined by

the curvature of the revenue function.
2It can (but of course need not) be thought of as arising from the integration of two markets, call them

A and B. In each market, demand is linear with PA(Q) = 10 − Q and PB(Q) = 5.5 − Q/4. Consequently,
revenue in each stand alone market is concave. Nevertheless, revenue in the integrated market is not.
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Figure 2: Panel (a): The function R(Q) is not concave. Panel (b): The function R(Q)
(dashed) is.

We conclude this section by explicitly showing how the optimal selling mechanism can be

computed when the revenue function R has two local maxima as is the case for our leading

example and Q lies in the convex interval between the local maxima. For α ∈ (0, 1), which

must be the case under a non-degenerate lottery mechanism, the first-order conditions for

maxQ1,Q2 Rα(Q1, Q2) can be written as3

R′(Q1) =
R(Q2)−R(Q1)

Q2 −Q1

= R′(Q2). (3)

Observe that (3) can never be satisfied for Q2 > Q1 if R is a strictly concave function since

this implies R′(Q2) < R′(Q1). However, since R is convex at Q, the revenue when selling

the quantity Q using the optimal lottery mechanism is

Rα∗(Q
∗
1, Q

∗
2) = R(Q∗1) + (Q−Q∗1)

R(Q∗2)−R(Q∗1)

Q∗2 −Q∗1
> R(Q),

where Q∗1 and Q∗2 solve (3) and α∗ =
Q∗2−Q
Q∗2−Q∗1

. This shows that a lottery mechanism strictly

outperforms price posting. Evaluated at a point where the first-order conditions are satisfied,

3Making use of the facts that ∂α
∂Q1

= α
Q2−Q1

and ∂α
∂Q2

= 1−α
Q2−Q1

, the first-order conditions for

maxQ1,Q2
Rα(Q1, Q2) can be written as

α

[
R′(Q1) +

R(Q1)−R(Q2)

Q2 −Q1

]
= 0 =

[
R′(Q2) +

R(Q1)−R(Q2)

Q2 −Q1

]
(1− α).

When α ∈ (0, 1), the last equation can equivalently be written as (3).
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3

MR

Figure 3: The original marginal revenue curve and the ironed marginal revenue curve
(dashed) for our leading example. The first-order conditions in (3) are equivalent to stipu-
lating that the two shaded regions are equal. In this example, Q∗1 = 9/2 and Q∗2 = 9.

we have
∂2Rα∗(Q

∗
1, Q

∗
2)

∂Q2
i

= R′′(Q∗i ) and
∂2Rα∗(Q

∗
1, Q

∗
2)

∂Q1∂Q2

= 0.

So the second-order conditions are satisfied if and only if R′′(Q∗i ) ≤ 0 for i = 1, 2. The proof of

Proposition 1 shows that Q∗1 and Q∗2 are unique and satisfy R(Q) = α∗R(Q∗1)+(1−α∗)R(Q∗2),

where R is the convex hull of R.4

3.2 Profit maximization

Recall that given Q, Q∗1 and Q∗2 do not vary with Q and all Q ∈ [Q∗1, Q
∗
2] give rise to the

same Q∗1 and Q∗2. We then have the following: For any revenue function R(Q) there are

finitely many (possibly zero) intervals, indexed by k ∈ {0, 1, . . . }, [Q∗1(k), Q∗2(k)] such that

the maximum revenue for selling Q is

R(Q) =

{
R(Q) Q /∈ ∪k[Q1(k), Q2(k)]

R(Q1(k)) + (Q−Q1(k))R(Q2(k))−R(Q1(k))
Q2(k)−Q1(k)

, Q ∈ (Q1(k), Q2(k)),
(4)

where k = 0 means that R(Q) = R(Q) for all Q. By construction, R(Q) is continuously dif-

ferentiable and such that Q ≤ Q̂ implies R
′
(Q) ≥ R

′
(Q̂), that is, exhibits weakly decreasing

marginal revenue.

4In general (that is, if R has more than two local maxima) if an interior solution (Q∗1, Q
∗
2) satisfying the

first and second order conditions exists, it is not necessarily unique and the optimal mechanism is pinned
down by the formal concavification argument provided in the appendix.
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Of course, often sellers choose the quantities they want to sell (and, of course, are typically

not required to sell their whole stock as our analysis above stipulated). Trivially, profit

maximization requires that the monopoly sells the quantity it produces optimally. Thus, the

monopoly’s profit maximization problem is

max
Q

R(Q)− C(Q), (5)

yielding the usual first-order condition

R
′
(Q∗)− C ′(Q∗) = 0. (6)

If C ′′ > 0, (6) is also sufficient for a maximum. Moreover, if C ′′ > 0 and Q∗ is such that

Q∗ ∈ (Q1(k), Q2(k)) for some k ≥ 1, profit maximization necessarily involves rationing.5

Assuming C ′′ > 0 allows us to restrict attention, without loss of generality, to the case

where k = 1, that is, where there is exactly one interval over which rationing will be optimal.

Whether rationing occurs under profit maximization then boils down to whether the inter-

section of R
′
(Q) and C ′(Q) occurs on this interval or not. Assuming C ′′ > 0 (and k = 1)

allows us also to unambiguously speak of p∗1 and p∗2 as the prices associated with the rationing

interval, with p∗1 and p∗2 given by

p∗1 = p1(Q
∗, Q∗1, Q

∗
2) and p∗2 = P (Q∗2).

Summarizing, we have shown the following (up to a few technical details which we relegate

to the appendix).

Proposition 2. The quantity Q∗ is the profit-maximizing quantity if and only if R
′
(Q∗) =

C ′(Q∗). Profit maximization requires rationing if and only if Q∗1 < Q∗ < Q∗2.

Figure 4 illustrates the solution Q∗ ∈ (Q∗1, Q
∗
2) for our leading example when the marginal

costs function is 2Q/15.

For what follows, it is useful to refer to the submarket in which rationing occurs as the

lottery market. Assume that rationing occurs in equilibrium. After this lottery market

5If C ′(Q∗) = R(Q2(k))−R(Q1(k))
Q2(k)−Q1(k)

for some k ≥ 1 and if C ′′ = 0, then the profit-maximizing quantity is not

unique and the profit maximum can be implemented with and without inducing rationing as the monopoly
obtains the same profit for all Q ∈ [Q1(k), Q2(k)].
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Figure 4: The optimality condition R
′
(Q∗) = C ′(Q∗) illustrated for our leading example with

C(Q) = Q2/15.

closes, there will be buyers with values above p∗1 who were rationed but now might like to

buy in the submarket where Q∗1 units were allocated at the price p∗1. There are two ways to

deal with this. Either one can assume that all buyers with values above P (Q∗1) immediately

buy at p∗1, so that after the lottery market closes, buyers who were rationed there cannot

obtain any additional units at p∗1. Alternatively, and in line with real-world practice, one can

assume that the seller operates the two submarkets sequentially, offering the Q∗1 premium

“seats” or tickets at p∗1 first, and then offers to sell the additional units Q∗ −Q∗1 at p∗2 only

after all Q∗1 units are sold.

Interestingly, this dynamic interpretation and implementation also has a flavor of price

discrimination and exploratory pricing: Observing a monopoly selling the quantity Q∗1 at

p∗1 immediately and then increasing its quantity supplied to Q∗, with the remaining units

Q∗ − Q∗1 offered at the price p∗2, it is natural to think that the monopoly has misjudged

demand and now corrects its forecast error by increasing the quantity and reducing price.

Alternatively, and equivalently, the initial selling of Q∗1 at p∗1 may be interpreted as being

part of an exploratory pricing strategy to gauge demand. However, in our setting, these

connections are in appearance only as there is no aggregate uncertainty about demand, and

the seller, as everyone else, is fully aware that it will sell the additional units at the price p∗2
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after it has sold all units at p∗1.

3.3 Consumer preferences over lotteries and price posting

We now discuss how consumers’ welfare depends on whether the monopolist uses a lottery or

posts a price, keeping the demand function and parts of the cost function fixed as explained

below. This is a useful thought experiment in itself. It is further motivated by the effects

of resale that a lottery induces, which, as we show in the next section, may well be such

that the monopoly prefers to post a price even when, without resale, a lottery would be

optimal. For ease of exposition, we assume that the profit-maximization problem under

price posting has two local maxima, denoted (QL, pH) and (QH , pL) with QL < QH and

pH = P (QL) > pL = P (QH). For a piecewise linear demand function, Figure 5 provides an

illustration of the quantities QL, QH , Q∗1 and Q∗2. With strictly increasing marginal costs,

we have

Q∗1 < QL < Q∗ < QH < Q∗2.

Observe that because of this, we have

p2 = P (Q∗2) < pL < pH .

In our thought experiment, we keep the demand function and QL and QH fixed and assume

that marginal costs are strictly increasing but we allow Q∗ to vary continuously between Q∗1

and Q∗2. This corresponds to varying the marginal cost function C ′(Q) for Q ∈ (Q∗1, Q
∗
2)

while keeping C ′(Q∗1) and C ′(Q∗2) fixed. Notice that although we know p2 < pL < pH , we

cannot say in general how p1 and pH are ranked.

We first show that there is a potential conflict of interest among different groups of

consumers regarding the desirability of lotteries. If (QL, pH) is the global maximum, then all

consumers with values v ∈ [P (Q∗2), pH) are worse off with a lottery because they will not be

able to purchase a unit of the good when the monopolist posts a price of pH whereas they

have a chance of getting one in the lottery. The welfare implications for consumers with

values above pH depend on the details, in particular because the price p1 under the lottery

mechanism may be higher or lower than the price pH . Moreover, some of these consumers

will be rationed under the lottery mechanism. If the global maximum is (QH , pL), then
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Figure 5: For the marginal revenue and marginal cost curves illustrated here, Q is the
quantity sold in the absence of resale. Under a perfectly competitive resale market, the
primary market equilibrium would then be either (QL, pH) or (QH , pL).

consumers who participate in the premium market are better off with a lottery since they

will receive the good with certainty and pay a lower price under the optimal posted price.

The welfare implications for consumers that participate in the mass market under the lottery

cannot be determined in general. While these consumers pay a lower price p2 < pL under

the lottery, fewer units are produced in total and some of these consumers are rationed.

To complete the analysis of the conditions under which lotteries benefit consumers in the

sense of increasing consumer surplus, notice that consumer surplus under the lottery that

allocates Q in the revenue maximizing way, denoted CSL(Q), is

CSL(Q) =

∫ Q∗1

0

P (x)dx+ (1− α)

∫ Q∗2

Q∗1

P (x)dx−Rα(Q∗1, Q
∗
2),

whereas consumer surplus under price posting given the quantity Q, denoted CSP (Q), is

standard and given by

CSP (Q) =

∫ Q

0

P (x)dx−R(Q).

Observe that, for any Q ∈ [Q∗1, Q
∗
2],

CSL(Q) ≤ CSP (Q), (7)

with equality only if Q = Q∗1 or Q = Q∗2. This follows immediately from the fact that the

lottery both allocates inefficiently and generates more revenue for the monopolist. Thus,
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Figure 6: CSL(Q) (red) and CSP (Q) (blue) for Q ∈ [Q∗1, Q
∗
2]. The dashed line is CSP (QL).

consumers can benefit from a lottery only if (QL, pH) is the global maximum under price

posting. Notice also that because

∂CSL(Q)

∂Q
=

1

Q∗2 −Q∗1

[
R(Q∗1) +

∫ Q∗2

Q∗1

P (x)dx−R(Q∗2)

]
> 0, (8)

there is a unique Q̂ ∈ (QL, Q
∗
2) such that

CSL(Q̂) = CSP (QL).

That Q̂ < Q∗2 follows from the facts that CSP (Q) is increasing in Q and that CSL(Q∗2) =

CSP (Q∗2). This implies the following:

Proposition 3. Allowing the monopoly to use a lottery increases consumer surplus if and

only if Q∗ > Q̂ and (QL, pH) is the global maximum under price posting.

Observe that Q̂ can be larger than QH . In this case, a lottery always harms consumers

because Q∗ < QH .

Figure 6 illustrates (7) and Proposition 3. Notice that CSL(Q) in linear in general. This

follows because the derivative in (8) is independent of Q. In other words, the linearity of

R(Q) translates to CSL(Q) being linear.6 For our leading example in (2) and assuming

6In contrast, CSP (Q) need not be convex outside the ironing range, where R(Q) is concave, because
R′′ = 2P ′ + P ′′Q < 0 is compatible with CSP

′′
= −P ′ − P ′′Q < 0 since P ′ < 0.
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C(Q) = Q2/15, we have QL = 78/16 ≈ 4.69 as the quantity associated with the global

maximum under price posting and Q̂ = 2451/512 ≈ 4.79 < QH = 165/19 ≈ 8.68. Because

Q∗ = 7.5, Q∗ > Q̂ follows. Hence, consumer surplus with a lottery exceeds consumer surplus

under price posting.

Taken at face value, Proposition 3 may seem to give some justification to the view that

event organizers use rationing because they care for consumer surplus. After all, under the

conditions stated in the proposition, consumer surplus is higher with a lottery than with a

posted price mechanism. However, this alignment between what is good for the consumers

and what the monopoly likes is a sheer coincidence. The monopoly does, by our assumptions,

not care for consumer surplus. It uses a lottery mechanism because it maximizes profit.

4 Resale

Rationing, or “underpricing”, goes hand in hand with resale because the inefficient allocation

resulting from rationing opens scope for gains from trade. As mentioned, Bhave and Budish

(2018) consider “the combination of low prices and rent seeking by speculators due to an

active secondary market” to be the true puzzle in ticket pricing. Resale transaction prices

that exceed the initial sale prices (“face values”) are consistently observed in the real world

and seem, at face value, difficult to reconcile with rational seller behaviour. As outlined in

the introduction, while a variety of explanations have previously been put forward to justify

systematic ticket “underpricing”, it is difficult to explain why monopolists would pursue a

pricing strategy that leads to profitable rent-seeking by speculators. Not surprisingly, sellers

tend to dislike resale, with some going so far as seeing resale a threat to the existence of the

event industry (Miranda, 2016).

There is thus ample motivation to analyze resale in the context of our theory of optimal

rationing by a monopoly seller. We now provide such an analysis. We first show that resale

market transaction prices that exceed the initial sale prices of the seller can be consistent

with the seller exploiting an optimal pricing strategy involving rationing. We also show that,

very generally, the seller is harmed by resale. Taken together, this shows that high resale

prices can be consistent with the seller optimally inducing rationing (thus providing scope

for resale) and with the seller disliking resale (and potentially taking steps to mitigate it).
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In particular, provided the resale market is not too efficient, the seller does not dislike resale

enough to prevent it from occurring by setting a market clearing price.

For the case in which a perfectly efficient resale market operates with some probability, we

then provide a complete characterization of the optimal selling mechanism, showing, among

other things, that the ironing parameters Q∗1 and Q∗2 do not vary with this probability, only

the prices and hence the ironing marginal revenue. In turn, this implies that the optimal

quantity produced varies with the probability with which the resale market operates. We

conclude this section with an analysis of the welfare effects of resale prohibition. In particular,

we provide conditions such that consumers surplus is larger with resale prohibition than

when resale is permitted. Because the seller is better off without resale, this shows that

resale prohibition can increase social surplus. That being said, social surplus increasing

resale prohibition is a possibility, not a necessity.

4.1 Resale transaction prices

We begin our analysis by stipulating that the size of the resale market is negligible. In

particular, we assume that the resale market is only active with probability ρ, and let ρ go

towards 0. The benefit of studying this limiting case is that the seller’s strategy will be as

described in the previous section. Moreover, to make things interesting, we assume in what

follows that this problem is such that Q∗1 < Q∗ < Q∗2, that is, absent resale rationing is

strictly optimal. Recall that this implies

p∗2 < p∗1 < P (Q∗1). (9)

If one assumes that the resale market, if it operates, is characterized by random matching

between buyers and sellers, with either side given the chance of making a take-it-or-leave-it

offer with some probability, then the highest price offer made a by a seller in the resale

market is P (Q∗1), which the buyer with willingness to pay P (Q∗1) is willing to pay. Thus,

P (Q∗1) is also the highest transaction price in the resale market. Because of the inequalities

in (9), this implies that the highest resale transaction price exceeds even the initial sale price

in the premium market p∗1. Note also that in equilibrium any resale transaction price has

to exceed p∗2 because any successful buyer in the lottery market has a willingness to pay of
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v ≥ P (Q∗2) = p∗2. Thus, regardless of the specifics of the bargaining protocol and matching

technology of the resale market, the resale market transaction prices will necessarily exceed

the face value of the tickets sold at p∗2. Moreover, because we let ρ→ 0, the seller’s strategy

of inducing rationing is optimal. Summarizing, we thus have the following proposition, which

shows that resale with transaction prices that exceed the seller’s initial prices is consistent

with the use of a lottery mechanism in the primary market.

Proposition 4. Resale transaction prices exceed the initial price of p∗2 and may even be

larger than the initial price of p∗1.

Note that the previous proposition also applies if resale is unanticipated by the monop-

olist.

An interesting question concerns the empirical implications of our theory of optimal ra-

tioning by a monopoly seller. For ρ→ 0 (or unanticipated resale), a fundamental implication

of our theory is that revenue under the optimal lottery mechanism with Q ∈ (Q∗1, Q
∗
2) is a

convex combination of the revenue associated with selling the quantities Q∗1 and Q∗2 at market

clearing prices. This is equivalent to asking whether the incentive compatibility constraint

p∗1 = α∗P (Q∗1) + (1− α∗)p∗2

is satisfied. Thus, if an analyst observes p∗1, p
∗
2 and α∗, for example, by observing the premium

and lottery prices a seller sets, the quantities sold in the premium and the lottery market and

the numbers of users applying for a ticket in the lottery market, observations or estimations

of P (Q∗1) will, via the incentive compatibility constraint, provide a test of the theory. In light

of the preceding arguments about resale markets, if one is confident about having identified

the upper bound on resale transaction prices, one can use this upper bound as an estimate

of P (Q∗1).
7

4.2 Seller is harmed by resale

We now turn to the analysis when resale is non-negligible and may occur on the equilibrium

path. We begin with a very general result that states that the seller dislikes resale and

7Of course, there is some tension here as our theory is exactly correct only for ρ→ 0, in which case these
observations will be noisy.
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then make more specific assumptions to shed light on the seller’s optimal strategy when it

anticipates resale, on or off the equilibrium path.

To better appreciate both the generality of this result and the power (and, arguably,

beauty) of the mechanism design approach used to prove it, denote by UB(v) ≥ 0 the

expected payoff of a buyer —that is, of an agent who did not obtain an item in the primary

market allocation— with value v from participating in the resale market and reconsider the

incentive compatibility constraint for the marginal buyer whose value is P (Q1). Keeping the

equilibrium structure and p1, p2, Q1, Q2, and Q (and hence α) fixed, this constraint becomes

P (Q1)− p1 = (1− α)(P (Q2)− p2) + αUB(P (Q1)), (10)

where increases in UB(P (Q1)) can be interpreted as increases in the efficiency of the resale

market. Notice that (10) is equivalent to

p1 = α(P (Q1)− UB(P (Q1))) + (1− α)p2.

Thus, keeping everything else fixed, introducing or improving resale will harm the monopoly

because it induces downwards pressure on p1.

However, all else is not equal because resale also affects the participation constraint of

the marginal agent with value P (Q2) who is indifferent between participating and being

inactive. Without resale, this constraint binds by setting p2 = P (Q2). Denote the expected

payoff of a seller, that is, of an agent who obtained an item in the primary market, with

value v by US(v). Making the participation constraint bind means setting

p2 = P (Q2) + (1− α)US(P (Q2)).

Thus, the price that can be charged to the marginal agent who is indifferent between par-

ticipating and not increases with the efficiency of resale. Moreover, the fraction 1 − α of

this price increase can be passed on to agents who buy in the premium market because

p1 = α(P (Q1)−UB(P (Q1))) + (1−α)p2 by incentive compatibility. Thus, it seems that the

answer as to whether resale benefits or harms the monopoly seller depends on the intricate

details of the model, in particular, on the specifics of the resale market. If (1−α)2US(P (Q2))

is larger than αUB(P (Q1)), then both p1 and p2 increase with resale, which would then imply
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that the seller must be better off with resale. Because UB(P (Q1)) and US(P (Q2)) depend

on the details of how the resale market is modelled as well as on the distribution from which

values are drawn, an answer of even moderate generality seems difficult if not elusive.

We are now going to show that this is not the case by proving that the seller is harmed

by effective resale without imposing any specific assumptions about how the resale market

is modelled.

Our first set of assumptions merely stipulates that the resale market is anticipated by the

seller and by the agents and that behavior in the resale market constitutes a (Bayes Nash)

equilibrium. The importance of the second assumption is that it allows us to make use of

incentive compatibility in the resale market. This implies that agents with higher values

must obtain the good in every equilibrium of the resale market with a probability that is

at least as high as the probability with which agents with lower values obtain it. In turn,

this allows us to invoke the payoff equivalence theorem (see e.g. Myerson, 1981; Börgers,

2015). The payoff equivalence theorem implies that the expected payment the monopoly

can extract from an agent with value v is, up to constant, pinned down by the probability

with which the agent ultimately obtains the good, irrespective of whether the agent obtains

it in the primary or in the secondary market. (Under profit maximization, the constant is

pinned down by making the participation constraint bind.)

We say that the resale market is effective if the probability distribution of obtaining the

good is not uniform across types. (Observe that with the lottery it is uniform; by incentive

compatibility, the distribution can thus be only non-uniform if it assigns the good to agents

with higher values with higher probability.)

We continue assuming that the problem is such that, without resale, the monopoly

chooses rationing, i.e. Q∗1 < Q∗ < Q∗2.

Proposition 5. The monopoly’s profit with effective resale is smaller than without it.

Intuitively, the reason why, absent resale, the monopoly chooses a uniform probability is

that it would like to sell to the lower value agents (whose marginal revenue is higher) with

higher probability than to the higher value agents (whose marginal revenue is lower) but is

prevented from so doing by incentive compatibility: It cannot sell to lower value agents with
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higher probability than to higher value agents, so the best it can do is to sell to them with

equal probability. Effective resale undoes this by shifting probability to higher value agents.

To illustrate both the logic behind Proposition 5 and to pave the way towards our analysis

of optimal seller behaviour when resale is anticipated to occur on or off the equilibrium

path, we now study the case where the resale market is perfectly competitive (or perfectly

efficient) if it operates. Moreover, we assume, for now, that the resale market operates with

probability 1, that is, ρ = 1. Finally, motivated by our analysis in the previous section, for

now we restrict attention to the use of lottery mechanisms in the primary market.

Proposition 6. Fix any lottery mechanism with Q1, Q and Q2 satisfying Q1 ≤ Q ≤ Q2.

Then the equilibrium price and quantity traded in the secondary market, denoted p∗ and q∗,

are

p∗ = P (Q) and q∗ =
(Q−Q1)(Q2 −Q)

Q2 −Q1

.

Corollary 1. Assume the monopolist faces a perfectly competitive secondary market with

probability ρ = 1. Then the optimal lottery mechanism reduces to setting Q2 = Q and any

Q1 ≤ Q and p2 = P (Q) and p1 ≥ P (Q).

Proposition 6 and Corollary 1 imply that perfectly efficient resale is self-defeating in the

sense that the monopoly seller will never choose a pricing strategy such that resale occurs

on the equilibrium path.8

4.3 Efficient resale with some probability

To analyze resale that occurs on the equilibrium path in more detail, we now assume that

the resale market is perfectly efficient when it operates and that it operates with probability

ρ ∈ [0, 1]. With probability 1−ρ, there is no resale. This means that given Q1 ≤ Q ≤ Q2, the

probability that an agent of type v ∈ [P (Q), P (Q1)] who participates in the lottery market

8This is reminiscent of the observation of Loertscher and Niedermayer (2019) that a monopoly platform
has an incentive to drive out a competing exchange by using an inefficient mechanism if the competing
exchange is “too” efficient. A subtle but important difference is that in our model the monopolist uses an
inefficient pricing mechanism—rationing—if there is no competing exchange and an efficient mechanism—a
market clearing price—if the secondary market is perfectly effective. In contrast, in Loertscher and Nieder-
mayer (2019) entry by the sufficiently competing exchange is deterred by the use of an inefficient mechanism
whereas without entry deterrence the pricing mechanism is efficient and consists of posted prices.
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ends up with the good is

qρ(v) = ρ+ (1− ρ)
Q−Q1

Q2 −Q1

= ρα + (1− α) ≥ 1− α,

with strict inequality if ρ > 0. For an agent of type v < P (Q), this probability is qρ(v) =

(1 − ρ)(1 − α) ≤ 1 − α with strict inequality for ρ > 0.9 Thus, resale shifts the probability

distribution away from uniform probabilities for ρ = 0 to a distributions that gives higher

(lower) weight to buyers with values above (below) P (Q). Intuitively, because the buyers

with the higher values have lower marginal revenue, resale will harm the seller.10

Making the individual rationality constraint bind for the type with value P (Q2) we have

(1− ρ)P (Q2) + ρP (Q)− p2 = 0, which implies

p2 = (1− ρ)P (Q2) + ρP (Q). (11)

The right-hand side of (11) captures winning the lottery and retaining the ticket with prob-

ability 1− ρ and selling the ticket in the resale market for a price of P (Q) with probability

ρ.

Making the incentive compatibility constraint for the type with value v = P (Q1) bind,

and denoting all relevant variables by superscript ρ to indicate their dependence on the resale

probability, we obtain

P (Q1)− pρ1 = (1− α)(P (Q1)− p2) + αρ(P (Q1)− P (Q)). (12)

9The latter is slightly less relevant as the incentive compatibility constraints will not bind for buyers with
values below P (Q).

10At this stage we are still implicitly assuming that even with resale the seller is restricted to using two
prices only. Without resale, two prices are without loss of generality because the seller wants to keep the
allocation probability for the higher types in the lottery market as small as possible, which by incentive
compatibility then implies that this probability is uniform across agents in the lottery market. This logic in
fact extends to the model with perfect resale occurring with probability ρ. To see the idea, consider a direct
mechanism and assume that the designer (or seller) allocates the good to agents of type v with probability
g(v). Incentive compatibility in the designer’s mechanism requires that g(v) is non-decreasing in v. If the
designer allocates the total quantity Q, the total probability that an agent of type v obtains the good is
q(v) = g(v) − ρ(1 − g(v)) if v ≥ P (Q) and q(v) = g(v) − ρ(1 − g(v)) if v < P (Q). These q(v) are what
matters for the payment it can extract from the agents. If the designer chose g(v) to be non-uniform across
agents for whom g(v) ∈ (0, 1), this would imply q(v) > λ + ρ(1− λ) for v ≥ P (Q) and q(v) < λ− ρ(1− λ)
for v < P (Q), where λ is the probability resulting from the optimal lottery with uniform probability (and
two prices). But this would mean that high types with low marginal revenue (low types with high marginal
revenue) receive the good with higher (lower) probability than necessary. This result is formally stated in
Proposition 7.
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The first term on the right-hand side of (12) is associated with winning the lottery and

paying p2 and the second term comes from losing the lottery then participating in the resale

market and paying P (Q). Using (11) and rearranging gives

pρ1 = α(1− ρ)P (Q1) + ρP (Q) + (1− α)(1− ρ)P (Q2).

Notice that since the price in the resale market is always P (Q), pρ1 is now a convex com-

bination of p01 and P (Q), with the weight on P (Q) equal to the probability that the resale

market operates.11 Observe also that p11 = P (Q) and p12 = P (Q). Computing revenue for

the monopolist, we then have

Rρ(Q,Q1, Q2) = pρ1Q1 + pρ2(Q−Q1) = (1− ρ)Rα(Q1, Q2) + ρR(Q). (13)

As we should, we obtain as special cases R0(Q,Q1, Q2) = Rα(Q1, Q2) and R1(Q,Q1, Q2) =

R(Q), matching the expressions computed in the proof of Corollary 1. Let R
ρ
(Q) be the

maximum revenue when the resale market operates with probability ρ. For arbitrary ρ ∈
[0, 1], denote the maximizers of Rρ(Q,Q1, Q2) over (Q1, Q2) by Q∗i (ρ) for i = 1, 2. Then we

have the following:

Proposition 7. For any ρ ∈ [0, 1] we have R
ρ
(Q) = (1 − ρ)R(Q) + ρR(Q). Thus, for any

ρ′ > ρ ≥ 0 and any Q, R
ρ′

(Q) ≤ R
ρ
(Q). Moreover, for any Q ∈ [Q∗1(0), Q∗2(0)] (i.e. any

Q such that the monopolist optimally uses a lottery mechanism in the absence of resale) we

have Q∗1(ρ) = Q∗1(0) and Q∗2(ρ) = Q∗2(0). Finally, for any ρ ∈ [0, 1], the focus on lotteries

that involve only two prices is without loss of generality.

An illustration of the results of Proposition 7 for our leading example can be found in

Figure 7. Here we see that as ρ increases from 0 to 1, the envelope of R
ρ

of achievable rev-

enue is continuously deformed from the convex hull R of the revenue function to the revenue

function R itself. Similarly, the marginal revenue curve is continuously deformed from R
′

to R′. In this figure we also see that the lottery mechanism quantities Q∗1(ρ) and Q∗2(ρ) do

not vary with Q. So as the resale market increases in efficiency, it is the lottery mechanism

prices that adjust. Within the ironing range we also see that as the resale market becomes

11Recall that p01 is itself a convex combination of P (Q1) and P (Q2), with the weight on P (Q2) equal to
the probability of winning the lottery.
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Figure 7: As ρ increases from 0 to 1, the envelope of the revenue function that specifies
revenue achievable under a lottery mechanism is deformed from the convex full of the revenue
function back to the revenue function itself. As a result, the effective marginal revenue
function becomes upward sloping.

more efficient, the effective allocation probability for high value, low marginal revenue cus-

tomers increases. Similarly, the allocation probability for low value, high marginal revenue

customers decreases. Although the monopolist would optimally like to induce a uniform

allocation probability within the ironing range (and indeed the monopolist still does this in

the primary market), the effective allocations probabilities account for the fact that higher

value customers are more likely to end up with a ticket after the resale market operates. This

impacts the prices the monopolist can charge in the primary market, eroding the revenue of

the monopolist.

Finally, assuming that the monopolist’s cost function C(Q) is such that C ′(Q) is increas-

ing, the optimal quantity Q∗ is characterized by

(R
ρ
)′(Q∗) = C ′(Q∗).

Refer to Figure 8 for an illustration. For any ρ > 0 this equation may have multiple solutions,

in which case we need to check which of these corresponds to the global maximum of profit

R
ρ
(Q)− C(Q).

25



5 6 7 8 9
Q

-2

-1

1

2

3

4

R

r=0 r=1ê3 r=2ê3 r=1 MC

Figure 8: The optimal quantity Q∗ can still be determined, for general ρ, as the intersection
of marginal revenue and marginal cost.

4.4 Consumer surplus enhancing resale prohibition

We next discuss distributional and welfare effects of resale prohibition under the assumption

that without prohibition the secondary market would be perfectly efficient with probability

ρ = 1 if the seller induces rationing. These assumptions imply that one will never observe

a secondary market in operation, with or without resale prohibition. This is obvious when

resale is prohibited. Without prohibition, it follows from our observations above that, antici-

pating a perfectly efficient secondary market if it induces rationing, the monopolist optimally

posts a single price and thereby prevents resale from occurring (see Corollary 1). For the

purpose of this analysis, we impose the same assumptions as in Subsection 3.3. That is, we

assume that the profit-maximization problem under price posting has the two local maxima

(QL, pH) and (QH , pL) with QL < QH and pH = P (QL) > pL = P (QH) as illustrated in

Figure 5.

Because resale always harms the monopoly, it is no surprise that the monopoly always

benefits from resale prohibition. Interestingly, however, in our model it may well be the case

the consumers also benefit from resale prohibition. Our preceding analysis then implies that

the monopoly will choose price posting when resale is not prohibited.

Proposition 3 then sheds light on the question when resale prohibition increases consumer
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surplus as it implies the following corollary:

Corollary 2. Assume that resale, if not prohibited, is perfectly efficient. Then, consumer

surplus is higher when resale is prohibited if and only if Q∗ > Q̂ and (QL, pH) is the global

maximum under price posting.

Although this may sound counterintuitive at first, the channel through which consumer

surplus increasing resale prohibition becomes possible is simple. When resale is efficient, the

monopoly will stay clear of rationing (and of opening the scope for resale) and instead choose

the profit maximizing posted price-quantity pair. When the quantity under price posting is

smaller than under the lottery, the reduction in consumer surplus from the inefficiency of

the lottery allocation may be more than offset by the increase in consumer surplus resulting

from the fact that a larger quantity is being allocated.12 For example, for the piecewise

linear demand function in (2), consumer surplus is higher under resale prohibition if the

monopoly’s cost function is C(Q) = Q2/15.

5 Extension: Heterogeneous goods

Up to now, we have assumed a homogenous good. This assumption is useful as it highlights

the role of and rationale for rationing when revenue is not concave, but it is, obviously,

restrictive. For example, different categories of seats at an event venue may differ in quality

such as first row seats that are more prestigious and higher quality than other seats. As

mentioned in the introduction, seats of different qualities are often bunched together and

sold at a uniform price, for example, at the Australian Open. As we show next, our model

sheds new light on this phenomenon as well.

To account for quality differences, we now extend our baseline model by letting, for

i = 1, . . . , n, θi be the quality level of the good in category i with the θi’s satisfying θn > 0

and, for all i < n, θi > θi+1. The utility of a consumer with value v of obtaining a good

in category i is θiv. In this extension section, we only consider the problem of optimally

12Of course, the revenue they pay is also higher under the lottery, both because the quantity is larger and
because the lottery generates more revenue than price posting.
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selling, abstracting from the problem of producing the good and the different categories.13

Let ki ≥ 0 be the mass of units available in category i and let K =
∑n

i=1 ki be aggregate

capacity. As before, we assume that consumers have single-unit demands independently

drawn from a continuous distribution F that gives rise to an inverse demand function P (Q)

for goods of quality 1, and we denote the revenue of selling Q at the price P (Q) by R(Q).

We assume K < Q, where P (Q) = 0. Notice that if we normalize θ1 = 1 and assume ki = 0

for all i > 1, this model specialises to the one analyzed in Subsection 3.1.

For i < n, letting ∆i := θi − θi+1, the market clearing prices p = (p1, . . . , pn) for selling

the total capacity K satisfy pn = θnP (K), and, for i < n,

pi = pi+1 + ∆iP (K(i)), (14)

where K(i) =
∑i

j=1 kj. Iterative substitution then yields

pi = θnP (Q) +
n−1∑
j=i

∆jP (K(j)).

More generally, the market clearing prices for selling the quantity Q ≤ K are

pm(Q) = θm(Q)P (Q) and, for i < m(Q), pi = pi+1 + ∆iP (K(i)),

where m(Q) ∈ {1, . . . , n} is the index such that K(m(Q)−1) < Q ≤ K(m(Q)). Iterative substi-

tution then yields

pi = θm(Q)P (Q) +

m(Q)−1∑
j=i

∆jP (K(j)). (15)

Putting all of these calculations together, we have the following lemma.

Lemma 1. Revenue Rθ(Q) when selling Q ≤ K at market clearing prices is given by

Rθ(Q) = R(Q)θm(Q) +

m(Q)−1∑
j=1

R(K(j))∆j. (16)

13In some applications, this is a reasonable approximation to the problem sellers; for example, event venues
will often have fixed number of prestigious front row seats. At any rate, the assumption highlights the key
to the optimality of rationing.
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In light of Lemma 1 and our baseline analysis, one might intuitively expect that revenue

under the optimal mechanism is given by

R
θ
(Q) = R(Q)θm(Q) +

m(Q)−1∑
j=1

R(K(j))∆j,

that is, the convex hull of Rθ(Q). We will shortly show that this intuition is correct.

Under the class of lottery mechanisms described in Section 3, all lotteries had binary

outcomes, with winners receiving a ticket and losers missing out. The natural implemen-

tation was to ration losing agents so that they did not make a payment. When tickets are

heterogeneous there is scope for the monopolist to construct lotteries with multiple outcomes

differentiated by ticket quality. The natural implementation in this case is to think of each

lottery as a “category” of uniformly priced tickets that are available for purchase. For exam-

ple, a monopolist may price tickets by venue section but the quality of a given ticket might

actually depend on the row number of the corresponding seat. In principle any category of

tickets can also be rationed and for convenience we accommodate this by allowing lotteries

to include tickets of quality θn+1 = 0, where kn+1 =∞.14

Motivated by the previous observations, we now introduce generalized lottery mecha-

nisms. Under a generalized lottery mechanism that sells Q tickets, the monopolist offers

a collection of ticket categories I ⊂ P({1, . . . ,m(Q), n + 1}), where I is subject to three

restrictions.15 First, only tickets of consecutive qualities can be used to create a ticket cate-

gory.16 Second, for any ticket category that includes tickets of at least three qualities, tickets

that are of one of the interior quality levels cannot be included in any other ticket category.17

Third, the entire mass of Q tickets must be included in some category. It follows that ran-

dom allocation (ironing) in the interior involves bunching and uniform pricing of different

ticket categories, while random rationing only occurs for the lowest quality category (which

necessarily includes tickets of quality m(Q)). The precise mass of tickets included in each

category lottery together with the appropriate incentive constraints then pin down the price

14The natural implementation for these lotteries is to first ration an appropriate mass of consumers so
that all remaining consumers pay to enter a lottery in which they are guaranteed a ticket.

15Here, P(X) denotes the power set of the set X.
16We consider m(Q) and n+ 1 to be consecutive qualities.
17For example, if we have a category I = {i, i+ 1, i+ 2, i+ 3} then tickets of quality θi+1 and θi+2 cannot

be included in another category.
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of each ticket category.

It turns out that the optimal selling mechanism is in fact a generalized lottery mechanism

and ticket categories that include tickets of more than a single quality correspond to a

generalized ironing procedure that is applied to regions where the revenue function is convex.

This is stated formally in the following proposition:

Proposition 8. Revenue under the optimal selling mechanism is given by

R
θ
(Q) = R(Q)θm(Q) +

m(Q)−1∑
j=1

R(K(j))∆j.

Furthermore, this revenue is achieved by the generalized lottery mechanism.

In principle, the monopolist could decide not to sell the Q highest quality tickets from

the mass of K tickets available, However, the previous proposition shows that this is not

optimal and from this point forward we can assume, without loss of generality, that Q = K

(which in turn implies that m(Q) = n).

Q

R

K(i−1) K(i) K(i+1)

Figure 9: For the K(i) where the revenue function is concave, we use posted prices for the
associated categories under the generalized lottery mechanism.

We now provide a description of the optimal generalized lottery mechanism constructed

in the proof of Proposition 8. There are three cases to consider. The first case, illustrated in
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Figure 9, applies to regions where the revenue function is concave and ticket categories cor-

respond to ticket quality. In particular, for any i ∈ {1, . . . , n} such that R(K(i)) = R(K(i)),

there exists a stand-alone ticket category {i} and customers with v ∈ [P (K(i)), P (K(i−1))]

are allocated a ticket of quality θi at the market clearing price.

Q

R

Q1(i) K(i) Q2(i)

Figure 10: When a single K(i) falls within a convex region, a ticket category {i, i + 1} is
created. The number of ticket categories expands by one relative to the number of quality
levels.

In regions where the revenue function is convex, lotteries are required under the optimal

mechanism. In particular, for any i ∈ {1, . . . , n} such that R(K(i)) < R(K(i)) there exists,

by assumption, Q1(i) and Q2(i) with K(i) ∈ [Q1(i), Q2(i)] such that

R(K(i)) = α(i)R(Q1(i)) + (1− α(i))R(Q2(i)),

where

α(i) =
Q2(i)−K(i)

Q2(i)−Q1(i)
.

The interval [Q1(i), Q2(i)] corresponds to the mass of tickets included in a single ticket

category. The second case, illustrated in Figure 10, applies to regions where the number

of ticket categories expands by one relative to the number of quality levels. Specifically,

if K(i−1) ≤ Q1(i) < Q2(i) ≤ K(i+1), the ticket category {i, i + 1} is created and agents
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Q

R

Q1(i) K(i−1) K(j) K(i+1) Q2(i)

Figure 11: When multiple quantity cutoffs, say K(i−1), K(i) and K(i+1), fall within a single
convex region, a ticket category {i − 1, i, i + 1, i + 2} is created. The number of ticket
categories decreases by one relative to the number of quality levels.

with values v ∈ [P (Q2(i)), P (Q1(i))] enter a lottery and receive a ticket of quality θi with

probability 1− α(i) and θi+1 with probability α(i). The third case, illustrated in Figure 11,

applies to regions in which the number of ticket categories weakly contracts relative to the

number of quality levels. In particular, if K(i−1) ≤ Q1(i) < Q2(i) ≤ K(i+1) fails to hold then

we create a new ticket category Ij = I ∪ {max{I} + 1}, where I = {` ∈ {1, . . . , n} : K(`) ∈
[Q1(i), Q2(i)]}. If ` ∈ {min{I} + 1, . . . ,max{I} − 1} then the entire mass k` of tickets of

quality θ` are included in the associated lottery, along with a mass K(min{Ij})−Q1(i) of tickets

of quality θmin{I} and a mass Q2(i)−K(max{Ij}) of tickets of quality θmax{Ij}. This completes

our description of the allocation rule associated with the optimal selling mechanism. The

ticket category prices are then straightforward to compute given the incentive constraints

and for the sake of brevity, we defer the interested reader to the proof of Proposition 8.

Interestingly, allowing for heterogenous goods, non-concave revenue and the seller to use

an optimal mechanism also provides a solution to the long-standing problem of which goods

are to be treated as identical, which is sometimes referred to as conflation (see, e.g., Levin

and Milgrom, 2010). In our model, conflation is a function of the quality differentials of the

various goods available, the quantities in which these are available, and the curvature of the
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revenue function R(Q).

6 Related literature

There is a large literature on ticket pricing and ticket resale. For an excellent overview,

see, for example, Courty (2003a) and the references in Bhave and Budish (2018). Rosen

and Rosenfield (1997) analyze ticket pricing from the perspective of second-degree price

discrimination while Courty (2003b) introduces uncertainty about demand. Becker (1991)

considered the prevalence of non-market clearing pricing in the events industry a major

conundrum and provided a theory based on social interactions to explain the phenomenon.

As far as we know, the connection to non-monotone marginal revenue that gives rise to

optimal rationing (and, from the seller’s perspective, optimal prohibition of resale) and that

is at the heart of our paper, has not been made in the literature.

Mussa and Rosen (1978) first applied ironing techniques to a non-linear pricing problem

and Myerson (1981) introduced the concept of ironing in a mechanism design setup. While

the difference between different qualities of goods that is central in Mussa and Rosen (1978)

and the probability of being served that is a the center of attention in Myerson (1981) may

largely be a matter of interpretation, the quality interpretation may have clouded the view

that ironing implies rationing and random allocations. To the best of our knowledge, ours

is the first paper that shows how a seller, who is endowed with quantities (or capacities) of

vertically differentiated goods, can combine these goods into new quality categories to obtain

the convex hull of the revenue function. This problem is absent in the model Mussa and

Rosen (1978) analyze because there the seller can produce arbitrary quality levels without

any restrictions other than those imposed by the cost function. Put differently, in the

heterogenous goods extension of our model the key choice problem of the seller is how to

combine and price given sets of goods of given quality. In Mussa and Rosen, this problem is

moot because the seller can just choose the desired quality.

As we show, increasing marginal costs are necessary for rationing to be strictly optimal

with homogeneous goods. In Myerson (1981), marginal costs are strictly increasing because

the seller has an endowment of one unit, which, with more than one buyer, becomes a binding

constraint that can be interpreted as marginal costs of infinity at the second unit. In his
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setting, rationing is strictly optimal when multiple buyers have the same ironed virtual type

and this ironed virtual type is the highest among all virtual types. Of course, rationing

induces an inefficient allocation, which opens the scope for resale. Interestingly, while resale

that arises from the inefficiency in an optimal auction due to discrimination based on virtual

types when the buyers draw their values from hetereogenous distributions has been analyzed

(see, e.g. Zheng, 2002), ours is, as far as we are aware, the first paper to analyze resale that

arises from the inefficiency due to strictly optimal rationing.

Bulow and Roberts (1989) analyze ironing in a monopoly setting but assume constant

marginal costs, so that rationing is not required for profit maximization.18 As just discussed,

if the quantity sold is allocated efficiently, there is no scope for resale. Without invoking

mechanism design argument, using linear programming with discrete types, Wilson (1988)

analyzes monopoly pricing with non-monotone marginal revenue and increasing marginal

costs but does not allow for resale. As noted by Bulow and Roberts (1989), the first occur-

rence of ironing in the context of monopoly pricing is due to Hotelling (1931).

Dworczak et al. (2019) also consider mechanisms that involve two posted prices, where

one price involves trade with certainty and the other involves rationing. However, this

occurs in a fundamentally different setting and for different reasons. Dworczak et al. (2019)

only consider regular environments and focus on efficiency but assume that one unit of the

numeraire is not necessarily worth the same to all agents to capture inequality. Rationing

arises under efficiency as it provides a means for the designer to redistribute units of the

numeraire from “rich” to “poor” agents. Chan and Eyster (2003) is a precursor to that

in the following sense. For a college admissions problem, they show that when colleges

have, because of affirmative action, a preferences for students with lower scores students

over students with intermediate scores, the colleges will use uniform randomization over a

certain set of test scores if lower scores are correlated with the group that is favoured by

the affirmative action and when the college cannot, because of fairness constraints, admit

students with lower scores with higher probability than students with higher scores.

18A number of other papers, including Harris and Raviv (1981), Riley and Zeckhauser (1983) and Stokey
(1979), that also show the optimality of posted price selling mechanisms, which is sometimes referred to as
the “no-haggling” result, assume constant marginal costs (up to maximum demand). Samuelson (1984) is
an early example of a paper that finds the optimality of a two-price selling mechanism, which arises in a
setting where a buyer and seller have interdependent values.
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Che et al. (2013) derive the optimal assignment when agents are budget constrained.

They show that under certain conditions, lotteries are optimal, and analyze resale, assuming

an otherwise competitive resale market in which the initial seller can levy a tax on transac-

tions. While the empirical implications of their model and ours are similar, the driving forces

are different. In our setting, there are no budget constraints, and rationing occurs because

the seller maximizes profits. As noted, the fact that, and the reason why, in our model

the monopoly prevents resale from occurring on the equilibrium path if the resale market

technology is sufficiently effective resembles the observations made by Loertscher and Nie-

dermayer (2019), who show that a monopoly intermediary prevents entry by a competing

exchange if and only if the technology of the competing exchange is sufficiently effective.

As far as we are aware, Meng and Tian (2019) provide the first instance of a model in

which ironing is, in a sense, non-horizontal. The same phenomenon occurs in our model with

imperfect resale, and the reasons are related. Without additional constraints, the designer

would like to keep the probabilities uniform across agents. For some reason—resale in our

setting, second period allocation and information elicitation in Meng and Tian (2019)— the

designer cannot do that and is restricted to award the higher types with higher than uniform

probability, which makes the ironing increasing rather than horizontal. Of course, it will be

optimal to choose these probabilities as small as possible.

7 Conclusions

Non-market clearing prices that induce excess demand, rationing, and thereby open scope

for resale, are a persistent feature of reality but have been deemed puzzling for theory. By

charging a higher, market clearing price, it would seem that the seller could kill two birds

with one stone—prevent resale and generate more revenue. Analyzing an otherwise standard

monopoly pricing problem without restricting the seller to set market clearing prices and

revenue to be concave, we show that “underpricing” that induces random rationing and

opens scope for resale is part of the optimal selling strategy for a monopoly. Rationing is

strictly profit maximizing only if marginal costs are strictly increasing. We also show that

resale always harms the seller, and that a necessary condition for consumers to be better

off with random rationing than with market clearing prices is that, with market clearing
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pricing, the local maximum characterized by a small quantity and high price is the global

maximum. In an extension to heterogenous goods, we show that, in general, non-market

clearing prices are still an essential part of the optimal selling mechanism. However, non-

market clearing pricing may now take the form of selling goods of different qualities at

a uniform price, thereby randomly allocating the goods of heterogenous qualities to the

consumers with heterogenous valuations who purchase at the same price.

It does not take much imagination or experience to gather that the mechanism design

methodology developed by Roger Myerson was initially met with skepticism and criticism

based on the grounds that it was abstract and technical, maybe naturally begging the ques-

tion of where one observes the designs laid out there. While in the nearly four decades since,

partly driven by market design on the Internet, there has been a wide arrange of applications

of his methodology, a central piece of this methodology— ironing—has remained somewhat

under the radar, still begging the question as to where, if at all, one ever observes this

concept in the real world. One message emerging from our paper is that it may have been

hidden in plain sight. It explains both underpricing and rationing in ticket pricing and the

bunching of tickets of different quality into a single price category. This gives some reason

for skepticism towards often heeded calls for “realism”. Just because a concept is formulated

in the abstract does not mean that it does not have clear-cut counterpart in the real world

once one looks closely enough.

There are many avenues for future empirical and theoretical research. For one thing,

whether revenue under market clearing pricing is concave is an empirical question. From

a theoretical perspective, it would be interesting to extend the monopoly model we have

analyzed here to a model of quantity competition in which each firm can decide whether it

wants to iron its own residual demand function.
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A Proofs

A.1 Non-concave revenue that is a sum of concave revenues

We are now going to show that when market revenue R(Q) arises as the sum of n revenue

functions Ri(Q), R is not necessarily globally concave, even if each of the Ri are well-behaved

in the sense that they are twice continuously differentiable and concave. Here we focus on the

case where the largest willingness to pay pi := Pi(0) differs across the markets, where Pi(Q)

is the willingness to pay in market i. We will assume that pi > pi+1 for all i ∈ {1, . . . , n− 1}
and denote by Di(p) the demand function and by R̃i(p) the revenue function, as a function

of price, in market i. Let D(p) =
∑

iDi(p) be the aggregate demand function. Assuming all

Di are decreasing, D(p) is decreasing and hence invertible. Denoting by P (Q) this inverse,

R(Q) = P (Q)Q as usual. However, it turns out to be easier work with the functions R̃i(p).

Total revenue given p is

R̃(p) =
∑
i

R̃i(p).

Wherever R̃(p) is twice continuously differentiable, which occurs at all p such that all R̃i(p)

are twice continuously differentiable, we have

R̃′′(p) =
∑
i

R̃′′i (p).

However, at the n − 1 points p2, . . . , pn the revenue function is not differentiable. At every

point of non-differentiability pi, it satisfies

R̃′(pi + ε) =
i−1∑
j=1

R̃′j(pi + ε) >
i∑

j=1

R̃′j(pi + ε) = R̃′(pi − ε)

because R̃′i(p)|p=pi = piD
′(pi) < 0. That is, at every point of non-differentiability, the deriva-

tive R̃′ is increasing in p. Thus, R̃(p) is not globally concave. Because R(Q) = R̃(P (Q)), it

follows that R(Q) also fails to be globally concave.

Because R(Q), respectively R̃(p), only fail to be concave in the neighborhood of points

that are not differentiable, and because there are such points if and only if pi 6= pj for some

i and j (and analogously, p
i
6= p

j
where p

i
is such that Di(p) = Di(pi) for all p ≤ p

i
), it also

follows that R(Q) is globally concave if and only if pi = pj and p
i

= p
j

for all i and j.
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A.2 Proof of Proposition 1 and Theorem 1

To prove Proposition 1 and Theorem 1 we utilize the equivalence of monopoly pricing prob-

lems and optimal auction design. While this connection was first observed by Bulow and

Roberts (1989), we follow the proof methodology of Alaei et al. (2013).

Proof. For ease of exposition, in this proof we introduce the normalize the mass of consumers

to 1 (i.e. set µ = 1), which implies that Q ∈ [0, 1]. As noted by Bulow and Roberts

(1989), the monopolist’s revenue maximization problem is equivalent to designing an optimal

auction when the auctioneer (seller) faces a single buyer with a private value drawn from the

distribution F . In what follows, we refer to the problem with a continuum of buyers as the

monopolist’s problem and to the problem in which the designer faces a single buyer as the

auctioneer’s problem.

We first express the monopolist’s problem using concepts and results from mechanism

design. Specifically, fix Q and let 〈x, t〉 denote the selling mechanism chosen by the mo-

nopolist, where x(v̂) and t(v̂) respectively denote the probability that a buyer is allocated

a unit of the good and the price that buyer pays when the buyer reports to be of type v̂.19

Bayesian incentive compatibility then requires that, for all v, v̂ ∈ [0, P (0)], we have

vx(v)− t(v) ≥ vx(v̂)− t(v̂).

Similarly, individual rationality requires

vx(v)− t(v) ≥ 0.

Finally, feasibility requires ∫ P (0)

0

x(v)f(v) dv ≤ Q.

19Here, we are considering a standard mechanism format, where we think of buyers as observing the
mechanism 〈x, t〉 before reporting a type v̂ to the monopolist and then receiving a unit of the good with
probability x(v̂) and paying a price of t(v̂). Of course, given such a mechanism there is an equivalent imple-
mentation where buyers pay a transfer only upon receiving a unit of the good. Essentially, the monopolist
offers a menu of pairs (x(v̂), t(v̂)) and since an arriving buyer is free to report any type v̂, they can choose
any item from this menu.
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Following standard mechanism design arguments of Myerson (1981), under any optimal

incentive compatible and individual rational mechanism we must have

t(v) = vx(v)−
∫ v

0

x(u) du,

where x(v) is non-decreasing in v. The revenue of the monopolist under any optimal incentive

compatible and individually rational mechanism is then given by∫ P (0)

0

t(v) dv =

∫ P (0)

0

(
vx(v)−

∫ v

0

x(u) du

)
f(v) dv =

∫ P (0)

0

(
v − 1− F (v)

f(v)

)
x(v)f(v) dv.

Letting Φ(v) = v − 1−F (v)
f(v)

denote the virtual value function of Myerson (1981), the problem

faced by the monopolist is to maximize∫ P (0)

0

Φ(v)x(v)f(v) dv (17)

subject to the constraint that x(v) ∈ [0, 1] is increasing in v, as well as the feasibility

constraint ∫ P (0)

0

x(v)f(v) dv ≤ Q.

The objective (17) is of course the same objective function faced by an auctioneer who sells

an object to a buyer with private type v drawn from the distribution F . The monopolist

faces an additional feasibility constraint, namely that the object is allocated to the buyer

with an ex ante probability of at most Q.20

We now solve the monopolists’ optimization problem. Since the feasibility constraint

restricts the mass of units sold, we will ultimately rewrite the objective function so that the

variable of integration is the mass of units sold. First, we proceed by rewriting the objective

function in quantile space. In particular, let ψ(v) = 1−F (v) denote the quantile of the value

v (i.e. the mass of consumers with a value of at least v) and let y(z) = x ◦ ψ−1(z) denote

the quantile allocation rule. Our objective function can then be rewritten∫ 1

0

(
z

f(F−1(1− z))
− F−1(1− z)

)
y(z) dz =

∫ 1

0

R′(z)y(z) dz,

20The optimal mechanism for selling Q units also corresponds to the optimal selling mechanism for an
unconstrained auctioneer with an appropriately chosen reservation value c.
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where R(z) is the revenue generated by selling to all types that fall within the quantile z at

the market clearing posted price of P (z) = F−1(1− z). Integration by parts then yields∫ 1

0

zF−1(1− z)(−y′(z)) dz =

∫ 1

0

R(z)(−y′(z)) dz.

Following the analysis of Alaei et al. (2013) (see also Hartline (2017)), any incentive com-

patible allocation rule y(z) is non-increasing and can therefore be expressed as a convex

combination of reverse Heaviside step functions H(q − z) (where the reverse Heaviside step

function H(q − z) corresponds to the allocation induced by a posted price mechanism with

price F−1(1− q) and quantity sold q). Therefore, if we fix an allocation rule y(z) and repre-

sent it as a convex combination of reverse Heaviside step functions, we can compute revenue

by taking the corresponding convex combination of revenues for each associated posted price

mechanism. This is precisely how revenue is computed in the last expression for the objective

function. It immediately follows that the maximum achievable revenue that can be generated

by selling the quantity q is R(q), where R is the convex hull of R. Changing the variable of

integration from quantiles z to quantities q and incorporating the feasibility constraint, we

then have that revenue under the optimal mechanism is given by∫ 1

0

R
′
(q)H(Q− q) dq =

∫ 1

0

R(q)δ(Q− q) dq = R(Q),

where δ(x) denotes the Dirac delta function which has a point mass at x = 0.21 The state-

ments of Proposition 1 and Theorem 1 then follow immediately from the fact that whenever

Q is such that R(Q) > R(Q), R(Q) can always be expressed as a convex combination two

values (and this convex combination is unique when R has two local maxima).

A.3 Proof of Proposition 2

Proof. By the proof of Theorem 1, when the monopolist sells the quantity Q using the

optimal mechanism, revenue is given by R(Q). The monopolist thus seeks to chose the

quantity Q in order to maximize profits which are given by R(Q)−C(Q). By Alexandrov’s

21Recall that H ′(x) = δ(x) and that for a sufficiently well-behaved function f we have
∫∞
−∞ f(x)δ(x) dx =

f(0). Thus, we also see that our last expression for the objective function (which involves the derivative of
the allocation rule y(z)) is well-defined even if y(z) includes discrete jumps.
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theorem R is twice differentiable almost everywhere with R
′′ ≤ 0. The corresponding first-

order condition is simply R
′
(Q∗) = C ′(Q∗) and C ′′ > 0 is then a sufficient condition for a

maximum.

A.4 Proof of Proposition 4

Proof. Suppose that the lottery market operates (note that this is an off-path event since

we are considering the limit as ρ → 0). Then in equilibrium any successful buyer in the

lottery market has a willingness to pay of v ≥ P (Q∗2) = p∗2. It immediately follows that all

transaction prices in the secondary market will exceed p∗2. If we assume that the secondary

market is a market of perfect information characterized by random matching between buyers

and sellers, with either side given the change of making a take-it-or-leave-it offer with some

probability, then in equilibrium the highest transaction price in the secondary market is

P (Q∗2) > p∗1.

A.5 Proof of Proposition 5

Proof. For v̂ ∈ [P (Q∗2), P (Q∗1)], let ρ(v̂) be the ultimate probability (consisting of the proba-

bility of winning in the lottery plus the probability of obtaining the good in the resale market

respectively minus the probability of selling it in the resale market) of being allocated a unit

of the good when there is resale. Let λ∗ = (Q∗−Q∗1)/(Q∗2−Q∗1) be the (uniform) probability

that an agent of type v obtains the good in the lottery the monopoly induces when there is

no resale. We have ρ(v̂) > λ∗ > ρ(v) for v̂ sufficiently high and v sufficiently low, and ρ(.)

increasing by incentive compatibility.

The rest of the proof follows from the optimality of the lottery when there is no resale and

a revealed preference argument. Specifically, the lottery with allocation probability λ∗ and

parameters Q∗1 and Q∗2 implements the optimal mechanism derived by Myerson (1981) when

N agents draw their values independently from the distribution F that gives rise to P (Q)

as N goes to infinity. Because allocating the good to agents with values v ∈ [P (Q∗2), P (Q∗1)]

with probability λ∗ is strictly optimal in this mechanism and because the allocation rule that

allocates the good to agents of these types with probability ρ(v) is admissible in Myerson’s

problem but not chosen by the designer, it follows that λ∗ is strictly revealed preferred to
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ρ(v). This implies that the seller is strictly worse off with effective resale.

A.6 Proof of Proposition 6

Proof. By assumption, the consumers that participate in the lottery are those with values

that lie between P (Q2) and P (Q1). Since a mass of Q2 − Q1 consumers participate in the

lottery and only Q − Q1 units are allocated under the lottery, the total mass of units that

can be supplied in the secondary market is given by Q − Q1 and the maximum quantity

demanded in the secondary market is Q2 − Q. It follows that for qS ∈ [0, Q − Q1] and

qD ∈ [0, Q2 −Q] the supply and demand schedules are given by

P S(qS) = P

(
Q2 −

Q2 −Q1

Q−Q1

qS

)
and PD(qD) = P

(
Q1 +

Q2 −Q1

Q2 −Q
qD

)
.

In a competitive equilibrium in the resale market, we have qD = qS ≡ q∗ and P S(q∗) =

PD(q∗) ≡ p∗. Because P S(q∗) = PD(q∗) is equivalent to

Q2 −
Q2 −Q1

Q−Q1

q∗ = Q1 +
Q2 −Q1

Q2 −Q
q∗,

we obtain

q∗ =
(Q−Q1)(Q2 −Q)

Q2 −Q1

.

Plugging q∗ back into P S(q∗) yields p∗ = P (Q).

A.7 Proof of Corollary 1

Proof. When the resale market is perfectly efficient, the binding incentive compatibility

constraint for the consumer with value v = P (Q1) becomes

P (Q1)− p1 = (1− α)(P (Q1)− P (Q2)) + α(P (Q1)− P (Q))

which gives us

p1 = (1− α)P (Q2) + αP (Q). (18)

Revenue for the monopolist is the given by

R(Q,Q1, Q2) = Q1[(1− α)P (Q2) + αP (Q)] +Q2P (Q2)

= QP (Q2)− αQ1(P (Q)− P (Q2)).
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Observe that for any Q2 > Q and any Q1 ∈ [0, Q], we have

R(Q,Q1, Q2) ≤ R(Q,Q1, Q) = QP (Q) = R(Q).

Thus, with perfect resale the optimal “lottery” for the monopoly is degenerate and consists of

setting the market clearing price P (Q). (Any Q1 ∈ [0, Q] and any p1 ∈ (P (Q), P (Q1)] will be

optimal as no one will buy at p1 > P (Q).) Effectively, the monopoly’s profit-maximization

problem reduces to the standard case in which a single market clearing price that satisfies

R′(Q) = C ′(Q) is chosen. (Note that by assumption there will be at least two local maxima

that satisfy R′(Q) = C ′(Q) and the monopolist will optimally select whichever of these

corresponds to the global maximum.)

A.8 Proof of Proposition 7

Proof. Given any ρ ∈ [0, 1] we have

R
ρ
(Q) = max

Q1,Q2

Rρ(Q,Q1, Q2)

= max
Q1,Q2

((1− ρ)Rα(Q1, Q2) + ρR(Q))

= (1− ρ) max
Q1,Q2

Rα(Q1, Q2) + ρR(Q)

= (1− ρ)R(Q) + ρR(Q),

where this last line follow immediately from the proof of Proposition 1 and Theorem 1.

Since R(Q) ≥ R(Q) for all Q, the second statement of the proposition follows immediately

from the previous expression for R
ρ
(Q). We also immediately have that Q

(
1ρ) = Q∗1(0) and

Q∗2(ρ) = Q∗2(0), since the above maximization problem shows that Q∗1(ρ) and Q∗2(ρ) are

independent of ρ.

It only remains to show that the restriction to two-price lottery mechanism is without

loss of generality. The main difficulty here, is that the effective values of the customers in the

primary market are endogenous to the induced resale market outcome. However, letting ρ

and Q be given, then we know that the effective distribution of types faced by the monopolist

in the primary market is given by F̂ (x) = F (x) for x ≥ (1−Q)/Q and F̂ (x) = (1− ρ)F (x)

for x < (1−Q)/Q (i.e. the effective distribution function F̂ has a jump of mass ρ at the value

P (Q), reflecting the expected return for these types given that they retain an allocated ticket
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with probability 1− ρ and sell it in the secondary market with probability ρ. We then just

apply standard mechanism design arguments (see the proof of Proposition 1 and Theorem

1) to the selling problem with the effective inverse demand function to show that it suffices

to restrict attention to two-price lottery mechanisms. effective inverse demand curve P̂ to

see that it suffices to restrict attention to lottery mechanisms.

A.9 Proof of Lemma 1

Proof. Starting from

Rθ(Q) = (Q−Km(Q)−1)pm(Q) +

m(Q)−1∑
i=1

kipi

and using (15) we have

Rθ(Q) = (Q−Km(Q)−1)θm(Q)P (Q) +

m(Q)−1∑
i=1

ki

θm(Q)P (Q) +

m(Q)−1∑
j=i

∆jP (K(j))


= Qθm(Q)P (Q) +

m(Q)−1∑
i=1

ki

m(Q)−1∑
j=i

∆jP (K(j)).

Interchanging the order of summation and simplifying then yields

Rθ(Q) = Qθm(Q)P (Q) +

m(Q)−1∑
j=1

j∑
i=1

ki∆jP (K(j))

= Qθm(Q)P (Q) +

m(Q)−1∑
j=1

K(j)∆jP (K(j))

= R(Q)θm(Q) +

m(Q)−1∑
j=1

R(K(j))∆j.

A.10 Proof of Proposition 8

To prove this proposition, we follow the same methodology used to prove Proposition 1 and

Theorem 1.

Proof. For ease of exposition, in this proof we introduce the normalization µ = 1 (i.e. set

the mass of consumers to 1), which implies that Q ∈ [0, 1]. In this case, we will see that the
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monopolist’s revenue maximization problem is equivalent to designing an optimal multi-unit

auction where the auctioneer (seller) faces a single buyer with a one-dimensional private value

drawn from the distribution F (rather than an allocation problem involving heterogeneous

goods). In particular, in the multi-unit allocation problem, each additional “unit” allocated

to a given agent corresponds to purchasing an additional “unit” of quality. So if an agent

purchases i units in the multi-unit allocation problem, this corresponds to purchasing a good

of quality θn−i+1 in the original problem.

We first express the monopolist’s problem using concepts and results from mechanism

design. Specifically, let 〈x, t〉 denote the selling mechanism chosen by the monopolist. For

each possible buyer report v̂ ∈ [0, P (0)], the allocation rule x(v̂) = (x1(v̂), . . . , xn(v̂)) encodes

a probability distribution over the outcomes {1, . . . , n+1}, where outcome i ∈ {1, . . . , n+1}
corresponds to the buyer receiving a good of quality θi.

22 For i ∈ {1, . . . , n+1}, xi(v̂) denotes

the probability that a buyer that reports to be of type v̂ is allocated a good of quality θi.

Similarly, t(v̂) denotes the transfer paid by a buyer that reports to be of type v̂. Letting

θ = (θ1, . . . , θn), Bayesian incentive compatibility then requires that, for all v, v̂ ∈ [0, P (0)],

we have

v(θ · x(v))− t(v) ≥ v(θ · x(v̂))− t(v̂).

Similarly, individual rationality requires

v(θ · x(v))− t(v) ≥ 0.

Finally, feasibility requires that, for all i ∈ {1, . . . , n},∫ P (0)

0

xi(v)f(v) dv ≤ ki and
n∑
i=1

∫ P (0)

0

xi(v)f(v) dv ≤ Q.

Equivalently, letting X(i)(v) =
∑i

j=1 xj(v), feasibility requires that, for all i ∈ {1, . . . , n},∫ P (0)

0

X(i)(v)f(v) dv ≤ K(i) and

∫ P (0)

0

X(n)(v)f(v) dv ≤ Q.

Following standard mechanism design arguments (see, e.g., Myerson (1981)), under any

optimal incentive compatible and individual rational mechanism we must have

t(v) = v(θ · x(v))−
∫ v

0

(θ · x(u)) du,

22Recall that we introduced the convention θn+1 = 0 and Kn+1 =∞ for convenience.

48



where θ · x(v) is non-decreasing in v. The revenue of the monopolist under any optimal

incentive compatible and individually rational mechanism is then given by∫ P (0)

0

t(v) dv =

∫ P (0)

0

(
v(θ · x(v))−

∫ v

0

(θ · x(u)) du

)
f(v) dv

=

∫ P (0)

0

(
v − 1− F (v)

f(v)

)
(θ · x(v))f(v) dv.

Denoting by Φ(v) = v− 1−F (v)
f(v)

the virtual value function, the problem faced by the monopolist

is thus to maximize ∫ P (0)

0

Φ(v)(θ · x(v))f(v) dv, (19)

subject to the constraint that θ · x(v) ∈ [0, 1] is increasing in v, as well as the feasibility

requirements that, for all i ∈ {1, . . . , n},∫ P (0)

0

X(i)(v)f(v) dv ≤ K(i) and

∫ P (0)

0

X(n)(v)f(v) dv ≤ Q.

Since the feasibility constraints restrict the mass of goods sold for each quality level, as well as

the total quantity of goods sold, we will ultimately rewrite the objective function so that the

variables of integration are the cumulative mass of goods sold. We proceed by first rewriting

the objective function in terms of the cumulative allocation rules X(i)(v). In particular, if

we adopt the convenient notation ∆n = θn, which is natural given the convention θn+1 = 0,

then we can rewrite the objective function as follows:∫ P (0)

0

Φ(v)(θ · x(v))f(v) dv =
n∑
i=1

∫ P (0)

0

Φ(v)θixi(v)f(v) dv

=
n∑
i=1

∫ P (0)

0

Φ(v)∆iX(i)(v)f(v) dv.

This objective function is the same as the objective function faced by an auctioneer designing

a multi-unit auction involving a single buyer with private type v drawn from the distribution

F .

Next, we rewrite the objective function in quantile space. In particular, let ψ(v) =

1 − F (v) denote the quantile of the value v (i.e. the mass of consumers with a value of at

least v) and let Y(i)(z) = X(i) ◦ ψ−1(z) denote the ith cumulative quantile allocation rule.
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Our objective function can be rewritten

n∑
i=1

∫ 1

0

(
z

f(F−1(1− z))
− F−1(1− z)

)
∆iY(i)(z) dz =

n∑
i=1

∫ 1

0

R′(z)∆iY(i)(z) dz,

where ∆iR(z) is the revenue associated with selling an (n− i+ 1)th unit to all types within

the quantile z at the market clearing posted price ∆iP (z). Integration by parts yields

n∑
i=1

∫ 1

0

zF−1(1− z)∆i(−Y ′(i)(z)) dz =
n∑
i=1

∫ 1

0

R(z)∆i(−Y ′(i)(z)) dz.

Next, by Gershkov et al. (2013), we can restrict attention to allocation rules implementable

in dominant strategies without loss of generality. This restriction is useful because any

allocation rule implementable in dominant strategies is monotone in the sense that X(i)(v)

is increasing in v for all i ∈ {1, . . . , n}.23 Thus, we can restrict attention to allocation rules

such that Y(i)(z) is non-increasing in z for all i ∈ {1, . . . , n} which, following the analysis of

Alaei et al. (2013) (see also Hartline (2017)), can be expressed as a convex combination of

reverse Heaviside step functions Hi(q−z).24 If we fix an allocation rule Y(i)(z) and represent

it as a convex combination of reverse Heaviside step functions, we can compute the revenue

contribution from allocating an jth unit to some agents by taking the corresponding convex

combination of revenue contributions for each associated posted price mechanism. This

is precisely how revenue is computed in the last expression for the objective function. It

immediately follows that an upper bound on the revenue that can be generated by selling

an (n − i + 1)th unit to a mass of q agents is ∆iR(q), where R is the convex hull of R.25

Changing the variable of integration from quantiles z to quantities q and incorporating the

feasibility constraints for each quality i, an upper bound on the level of revenue that can be

23Note that the Bayesian incentive compatibility requirement that θ · x(v) is increasing in v does not
immediately imply that the X(i)(v) are all increasing in v because of the θ vector weighting.

24In this problem the reverse Heaviside step function Hi(q − z) corresponds to the allocation where an
(n− i+ 1)th unit is sold to a mass q of agents under the market clearing posted price of ∆iF

−1(1− q)).
25At this stage in the proof of Proposition 1 and Theorem 1, we immediately had that this upper bound

was achievable (and in particular, achievable using a lottery mechanism). Here, however, we face additional
constraints that have not yet been addressed: A jth unit can only be allocated to agents that have already
been allocated j − 1 units. Therefore, if lotteries are involved in the allocation at multiple quality levels,
these lotteries may need to be “coordinated” so that we never attempt to randomly allocate a jth unit to
an agent that was not randomly allocated a (j− 1)th unit in a previous lottery. However, we will shortly see
that this upper bound is in fact achievable because whenever lotteries are used for adjacent quality levels, the
interval of types involved in each lottery is the same. This property allows these lotteries to be coordinated
and the aforementioned constraints are satisfied without losing any revenue.
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achieved under the optimal mechanism is

n∑
i=1

∫ 1

0

R
′
(q)∆iHi(K(i) − q) dq.

Finally, we need to incorporate the constraint that a mass of at most Q units is sold. From

the previous expression, we see that it is optimal to sell as many higher quality goods as

is feasible, since higher quality goods make a greater revenue contribution. Adopting the

notation from Section 5, this means the lowest quality good allocated is m(Q). Therefore,

incorporating this last feasibility constraint, we have

m(Q)−1∑
i=1

∫ 1

0

R
′
(q)∆iH(K(i) − q) dq +

∫ 1

0

R
′
(q)θm(Q)H(Q− q) dq

=

m(Q)−1∑
i=1

∫ 1

0

R(q)∆iδ(K(i) − q) dq +

∫ 1

0

R(q)θm(Q)δ(Q− q) dq

=

m(Q)−1∑
i=1

R(K(i))∆i +R(Q)θm(Q), (20)

where δ(x) denotes the Dirac delta function which has a point mass at x = 0. This last

equation is precisely the convex hull of revenue under market clearing posted prices (see

(16)).

To complete the argument we describe an allocation that achieves the upper bound in

terms of the multi-unit allocation setting. Since the Q highest quality tickets are allocated

under this upper bound, without loss of generality we can simplify the exposition by setting

Q = K (which implies that m(Q) = n). We begin by considering how to allocate all

agents their first units. If R(Q) = R(Q), these units are simply allocated to all agents with

v ≥ P (Q). If R(Q) < R(Q), then there exists Q1(n) and Q2(n) with Q ∈ [Q1(n), Q2(n)]

such that

R(Q) = α(n)R(Q1(n)) + (1− α(n))R(Q2(n)),

where

α(n) =
Q2(n)−Q

Q2(n)−Q1(n)
.
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Under the optimal allocation all agents with values such that v ≥ P (Q1(n)) are then allocated

a first unit with certainty, while agents such that v ∈ [P (Q2(n)), P (Q1(n))] are allocated a

first unit with probability 1− α(n).

Now consider allocating some agents their second unit. If R(K(n−1)) < Q1(n) (which

holds if R(K(n−1)) = R(K(n−1)) and may also hold otherwise) then we allocate the second

units in the same manner as the first unit. In particular, even if a lottery is involved in the

allocation of both first and second units we must have R(K(n−1)) < R(K(n−1)). Therefore,

we do not need to worry about “coordinating” these lotteries (see footnote 25) since any

agent that participates in a lottery for the second unit is necessarily allocated a first unit. If

R(K(n−1)) > Q1(n) then we have R(K(n−1)) < R(K(n−1)), as well as

R(K(n−1)) = α(n− 1)R(Q1(n)) + (1− α(n− 1))R(Q1(n)),

where

α(n− 1) =
Q2(n)−K(n−1)
Q2(n)−Q1(n)

.

So under the optimal allocation, agents with v ≥ P (Q1(n)) are allocated a second unit with

certainty, while agents with v ∈ [P (Q2(n)), P (Q1(n))] must participate in a lottery in which

they are allocated two units with probability 1−α(n− 1). So under the optimal allocation,

agents with values in the interval [P (Q2(n)), P (Q1(n))] first participate in a lottery for a

first unit, and the successful agents then participate in a lottery for a second unit. From

an ex ante perspective, the agents with values within the interval [P (Q2(n)), P (Q1(n))] that

are allocated two units are selected uniformly at random, which is how we can achieve the

upper bound given in (20). Iterating, we proceed in this manner, constructing the optimal

allocation unit by unit until the appropriate allocation of the nth units is determined.

This multi-unit allocation rule is isomorphic to the allocation rule of a generalized lottery

mechanism, which we now describe together with the ticket category prices. Before proceed-

ing we first make note of a useful property of generalized lottery mechanisms. Specifically,

the three restrictions on ticket categories under a generalized lottery mechanism imply that

ticket categories have a natural quality ordering: For any categories I, I ′ ∈ I we have

min{I ′} ≥ max{I} or min{I} ≥ max{I ′}. We can thus index ticket category quality by j
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in a well-defined manner, where Ij denotes the jth highest quality ticket category. We also

introduce the vector y(Ij) = (y1(Ij), . . . , yn(Ij)), where y`(Ij) is the probability of receiving

a ticket of quality θ` in the category j lottery and let p(Ij) denote the price of ticket category

j.

To describe the generalized lottery mechanism and we proceed by considering three cases.

First, for any i ∈ {1, . . . , n} such that R(K(i)) = R(K(i)) we introduce a ticket category {i}.
Letting j denote the quality index of category {i}, agents with values v ∈ [P (K(i)), P (K(i−1))]

are allocated a ticket of quality θi and, for sufficiently small ε > 0, agents with values

v ∈ [P (K(i)) − ε, P (K(i))) are allocated a ticket from category j + 1. Suppose that i < n.

Then aside from the knife-edge case K(i) = Q1(i + 1), we have Ij+1 = {i + 1} and the price

of tickets in category Ij = {i} is given by

p(Ij) = p(Ij+1) + ∆iP (K(i)).

When K(i) = Q1(i+ 1) we have

p(Ij) = p(Ij+1) + (θi − θ · y(Ij+1))P (K(i)).

And for the i = n case, p(Ij) = θnP (Q).

Next, for any i ∈ {1, . . . , n} such that R(K(i)) < R(K(i)), a non-trivial ticket category

that corresponds to a lottery needs to be created. By assumption, there exists Q1(i) and

Q2(i) with K(i) ∈ [Q1(i), Q2(i)] such that

R(K(i)) = α(i)R(Q1(i)) + (1− α(i))R(Q2(i)),

where

α(i) =
Q2(i)−K(i)

Q2(i)−Q1(i)
.

The interval [Q1(i), Q2(i)] then maps to the mass of tickets included in the lottery, as we

explicitly describe in the next two cases.

For the second case, we suppose that R(K(i)) < R(K(i)) and K(i−1) ≤ Q1(i) < Q2(i) ≤
K(i+1) hold. Here, a ticket category Ij = {i, i+1} needs to be created, where the correspond-

ing lottery includes a mass of K(i) − Q1(i) tickets of quality θi and Q2(i) − K(i) tickets of

53



quality θi+1. Agents with values v ∈ [P (Q2(i)), P (Q1(i))] are allocated a ticket from category

Ij. For sufficiently small ε > 0, agents with values v ∈ [P (Q2(i))− ε, P (Q2(i))) are allocated

a ticket from category Ij+1 and agents with values v ∈ (P (Q1(i)), P (Q1(i)) + ε] are allocated

a ticket from category Ij−1. Suppose that i < n. Then aside from the knife-edge cases where

Q2(i) = K(i+1) or Q2(i) = Q1(i + 1), we have Ij+1 = {i + 1} and the price of the category

Ij = {i, i+ 1} tickets is

p(Ij) = p(Ij+1) + (1− α(i))∆iP (Q2(i)).

If Q2(i) = K(i+1) or Q2(i) = Q1(i+ 1) we have

p(Ij) = p(Ij+1) + ((1− α(i))θi + α(i)θi−1 − θ · y(Ij+1))P (Q2(i)).

When i = n the natural implementation is for agents to pay only if they aren’t rationed and

p(Ij) = θnP (Q2(i)).

Finally, to ensure that we have a complete specification of all ticket category prices, we need

to price the ticket category containing only tickets of quality θi, if it exists. Specifically,

aside from the knife-edge case where Q1(i) = K(i−1) (or Q1(i) = 0 when i = 1), we have have

I(j − 1) = {i} with

p(Ij−1) = p(Ij) + α(i)∆iP (Q1(i)).

The third and final case that needs to be considered is when we still have R(K(i)) <

R(K(i)) but K(i−1) ≤ Q1(i) < Q2(i) ≤ K(i+1) fails to hold. Letting I = {` ∈ {1, . . . , n} :

K(`) ∈ [Q1(i), Q2(i)]}, a ticket category Ij = I ∪ {max{I} + 1} needs to be created. For

` ∈ {min{Ij} + 1, . . . ,max{Ij} − 1} the entire mass k` of tickets of quality θ` are included

in the ticket category, along with a mass K(min{Ij}) − Q1(i) of tickets of quality θmin{I} and

a mass Q2(i) − K(max{Ij}) of tickets of quality θmax{Ij}. Suppose that max{Ij} < n. Then

aside from the knife-edge cases where Q2(i) = K(max{Ij}) or Q2(i) = Q1(max{Ij}), we have

Ij+1 = {max{Ij}} and the price of tickets in category Ij is given by

p(Ij) = p(Ij+1) + (θ · y(Ij)− θmax{Ij})P (Q2(i)).
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If Q2(i) = K(max{Ij}) or Q2(i) = Q1(max{Ij}), this becomes

p(Ij) = p(Ij+1) + (θ · (y(Ij)− y(Ij+1)))P (Q2(i)).

When i = n the natural implementation is for agents to pay only if they aren’t rationed.

Letting yn+1(Ij) denote the probability of rationing we have

p(Ij) = (θ · y(Ij))P (Q2(i))/yn+1(Ij).

Finally, for completeness, we need to price the ticket category containing only tickets of qual-

ity θmin{Ij}, if it exists. Specifically, aside from the knife-edge case where Q1(i) = Kmin{Ij}−1

(or Q1(i) = 0 when i = 1), we have Ij−1 = {min{Ij}} with

p(Ij−1) = p(Ij) + (θmin{Ij} − θ · y(Ij))P (Q1(i)).
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