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1 Introduction

Minimum wage legislation—which is once again featuring prominently in public policy pro-

posals in the United States—has been around for over a century.1 So too have debates among

economists and policy makers concerning the effects of minimum wages on total employment,

involuntary unemployment, and workers’ pay. In models with price-taking firms and workers,

minimum wages have either no effect, or induce involuntary unemployment and inefficiently

low employment. However, as pointed out by Stigler (1946), if employers exert monopsony

power over the labor market then an appropriately chosen minimum wage can increase work-

ers’ pay and employment without creating involuntary unemployment. The effects Stigler

identified are consistent with the empirical findings of Card and Krueger (1994).

In this paper, we offer a novel perspective on the effects of minimum wages that nests the

aforementioned approaches. We first analyze a model in which a monopsony employer faces

a continuum of workers. Without a minimum wage, the monopsony’s optimal procurement

mechanism involves wage dispersion and induces involuntary unemployment whenever the

procurement cost function—that is, the quantity procured multiplied by the market-clearing

wage—is not convex at the optimal level of employment. Such a mechanism is optimal be-

cause it minimizes the total procurement cost subject to workers’ incentive compatibility

and individual rationality constraints. We then show that introducing a minimum wage be-

tween the lowest wage offered in equilibrium and the market-clearing wage at the equilibrium

level of employment increases total employment and decreases involuntary unemployment.

In fact, it is always possible to eliminate involuntary unemployment with an appropriately

chosen minimum wage. Even a minimum wage equal to the highest wage offered absent reg-

ulation increases total employment relative to the case without wage regulation. However,

it eliminates involuntary unemployment if and only if the perfectly competitive equilibrium

wage is larger than this wage.

Figure 1 illustrates the effects of minimum wages for the textbook model that assumes

price-taking behaviour; for Stigler’s analysis of minimum wages under monopsony power;

and for the case analyzed in this paper, in which the monoposony is allowed to use the

optimal mechansim subject to workers’ incentive compatibility and individual rationality

constraints. If the cost of hiring labor at the market-clearing wage is not convex in the level

of employment, then the optimal mechanism involves an efficiency wage—a wage exceeding

the market clearing wage—and a low wage at which the workers with the lowest opportunity

cost of working are employed. In such cases, randomly rationing the associated excess

1While precursors to minimum wage legislation date back to the Hammurabi Code (c. 1755–1750 BC),
New Zealand became the first country to implement a minimum wage in 1894, followed by the Australian
state of Victoria in 1896, and the United Kingdom in 1909 (Starr, 1981).
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Figure 1

supply of labor allows the employer to procure labor at the lowest marginal cost, subject to

the monotonicity constraint implied by the incentive compatibility constraints that workers

with lower costs cannot be hired with lower probability than workers with higher costs.2

The richness and—at first glance—counterintuitive nature of the minimum wage effects

when the employer uses an optimal mechanism raise the question of how a regulator or

legislator could tell whether the problem at hand is such that increasing the minimum wage

increases employment and decreases involuntary unemployment or achieves the contrary

effects. As we show, the answer relates to whether or not there is wage dispersion before

the minimum wage is increased marginally: If there is involuntary unemployment and wage

dispersion, then a sufficiently small increase of the minimum wage will increase employment

and decrease involuntary unemployment. Similarly, if there is no wage dispersion and no

involuntary unemployment, then a sufficiently small increase in the minimum wage will

generically increase employment.3

For a model of quantity competition in which the aggregate quantity is procured at min-

imal cost, we also show that total employment and involuntary unemployment can move in

the same direction and that there is no intrinsic relationship between the intensity of compe-

tition and the level of involuntary unemployment. Indeed, perfect competition is consistent

with a positive level of involuntary unemployment. The main insights from the monopsony

model with regard to minimum wage effects carry over to the model with quantity com-

petition. In particular, an appropriately chosen minimum wage still eliminates involuntary

2The fact that the mechanism involving an efficiency wage and involuntary unemployment resonates with
the dictum often attributed to Henry Ford that the Five-Dollar Day was “the best cost-cutting measure
ever undertaken.” Contrary to perceived wisdom, a wage of five dollars per day was not uniformly applied
across all workers from the time of its introduction in 1914. See, for example, Sward (1948) who notes that
according to the company’s financial statement 30% of the overall workforce were paid less than that in 1916.

3The non-generic, knife-edge case arises when the minimum wage is equal to the wage that would prevail
under price-taking behaviour.
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unemployment. With horizontally differentiated workers and jobs, optimal procurement may

involve deliberate and inefficient mismatches of workers and jobs, in addition to involuntary

unemployment.

Our paper also sheds new light on the effects of costly migration from one region, country

or sector to another (or, equivalently, of fixed costs associated with joining the work force).

We show that costly migration causes the cost of procurement to be non-convex even if it

is convex absent any migration. In this sense, migration caused by an increase in demand

in one region can lead to involuntary unemployment because using an efficiency wage and

inducing involuntary unemployment may become optimal due to the non-convexity of the

procurement cost. In another extension, we also show that the introduction of a small amount

of unemployment insurance increases unemployment and decreases total employment if the

equilibrium without government intervention involves involuntary unemployment.

Our paper is closely related to three strands of literature: efficiency wage theory, monopoly

and monopsony models under price regulation, and mechanism design problems that involve

ironing. That involuntary unemployment is beneficial for businesses and detrimental for

workers is a popular idea whose origins date back at least to Friedrich Engels’ and Karl

Marx’ notion of a reserve army of labor.4 More recently, it appears in the guise of the

efficiency-wage theory of involuntary unemployment. According to this theory firms deliber-

ately offer wages that exceed their market-clearing level so that the resulting excess supply

of labor (and corresponding level of involuntary unemployment) can be used to discipline

their workforce. For example, firms may offer efficiency wages to increase workers’ effort or

reduce churn. The collection of essays in Akerlof and Yellen (1986) provides an overview of

the early literature that formalized these ideas, while Krueger and Summers (1988) provide

empirical evidence on industry wage structure. Notwithstanding their popular appeal, one

major drawback of shirking and labor market turnover models of efficiency wages is that

they rest on implicit or explicit restrictions on the contracting space. As Yellen (1984, p.

202) put it: “All these models suffer from a similar theoretical difficulty—that employment

contracts more ingenious than the simple wage schemes considered, can reduce or eliminate

involuntary unemployment.” Our paper contributes to this literature by developing a model

in which an efficiency wage that is optimal, subject only to individual rationality and incen-

tive compatibility constraints, induces involuntary unemployment. Because the mechanism

design approach we use is free of institutional assumptions and does not restrict the con-

tracting space, in our setting efficiency wages and involuntary unemployment arise from the

primitives of the problem.

Stigler (1946) observed that equilibrium employment can be increased with a minimum

4See Engels (1845) and Marx (1867).
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wage in the presence of monopsony power.5 The basic logic extends to imperfectly com-

petitive markets, as shown, for example, by Bhaskar et al. (2002). Our paper shares the

feature that minimum wages can increase employment. However, while these models can

explain inefficiently low employment due to market power on the demand side, they can-

not say anything about effects on involuntary unemployment because all unemployment is

voluntary in models with market-clearing wages. By allowing the monopsony to use an op-

timal procurement mechanism, we obtain wage dispersion and involuntary unemployment

absent wage regulation in equilibrium, thereby combining insights from Stigler’s analysis

and the mechanism design approach pioneered by Roger Myerson. From a methodological

perspective, our paper is thus most closely related to the literature on monopoly pricing and

mechanism design that fail to satisfy the regularity condition of Myerson (1981) and involve

ironing. Of course, the idea that monopolies may benefit from bunching when faced with

non-concave optimization problems is not novel and dates back to Hotelling (1931), with

subsequent contributions by Mussa and Rosen (1978), Myerson (1981), Bulow and Roberts

(1989), and a recent upsurge of interest driven by the applications considered in Condorelli

(2012), Dworczak et al. (2021), Loertscher and Muir (2021a) and Akbarpour et al. (2020).

That said, to the best of our knowledge, the connection between irregular mechanism design

problems, involuntary unemployment and minimum wage effects that are made in this paper

have never been touched upon before.6

Our model of quantity competition in Section 5 is related to the literature on Cournot

competition (Cournot, 1838), while our discussion of optimal mechanisms in the Hotelling

model builds on Balestrieri et al. (2021) and Loertscher and Muir (2021b). It also relates

to mechanism design problems involving endogenous worst-off types (see, for example, Lo-

ertscher and Wasser, 2019).

The remainder of this paper is structured as follows. Section 2 introduces the baseline

procurement setup. In Section 3, we relate the monopsony’s optimal procurement mechanism

to efficiency wages and involuntary unemployment. In Section 4, we analyze the effects of

minimum wages. While we do not pursue it in this paper, with the appropriate adjustments

the methodology developed there is also applicable to the analysis of price caps imposed

on a monopoly seller who faces a non-concave revenue function. Section 5 extends the

model to quantity competition. Section 6 provides extensions to horizontally and vertically

5As mentioned, there is empirical evidence consistent with these effects. The classic paper is Card
and Krueger (1994). More recently, Wiltshire (2021) provides an analysis of the labor market effects of
Walmart supercenters and the effects of minimum wages in the presence of monopsony power, as well as a
comprehensive list of references.

6The analysis of the model with heterogeneous tasks and endogenous multi-tasking in Section 6.2 is related
to the seminal multi-tasking model of Holmström and Milgrom (1991) and the mechanism design analyses
of Condorelli (2012) and Loertscher and Muir (2021a), which involve the allocation of heterogeneous goods.
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differentiated jobs, analyzes the effects of prohibiting wage discrimination, and discusses the

effects of costly migration and of introducing unemployment insurance. Section 7 concludes

the paper.

2 Setup

We consider the procurement problem of a monopsony whose willingness to pay for Q ∈ [0, 1]

units of labor is V (Q). For simplicity the function V is assumed to be a strictly decreasing

and continuously differentiable function on Q ∈ [0, 1].7,8 Let W denote the inverse supply

function faced by the the monopsony so that W (Q) is then the market-clearing wage for

procuring the quantity Q ∈ [0, 1]. We denote by

C(Q) := W (Q)Q

the cost of procuring Q ∈ [0, 1] units at the market-clearing wage. We assume that the supply

side consists of a continuum of workers of mass 1 each of whom supplies one unit of labor

inelastically, with W (Q) representing the opportunity cost of working for the worker with

the Q-th lowest opportunity cost. We further assume that the opportunity cost of working

is the private information of each worker and that W is a strictly increasing (so that the

monopsony faces an upward sloping labor supply schedule) and continuously differentiable

function.9 This in turn implies that the function C is strictly increasing and continuously

differentiable. The input (or labor) supply function is denoted by S so that S(w) = W−1(w)

holds for all wages w ∈ [W (0),W (1)].

We assume that V (0) > W (0) and V (1) < W (1), which implies that under the opti-

mal procurement mechanism there is a strictly positive mass of workers employed by the

monopsony and a strictly positive mass of workers that are not employed. We also allow the

monopsony to offer multiple wages (w1, . . . , wn) and to specify the amount that it is willing

to procure at each wage wi. We refer to (w1, . . . , wn) as the wage schedule. We say that

the monopsony uses an efficiency wage to procure a total quantity Q if its wage schedule

involves a wage wi that is larger than the market-clearing wage (i.e. wi > W (Q)) and if it

7As will become clear, by assuming that V is strictly decreasing we avoid having to deal with the possibility
that the optimal quantity procured is not unique. Introducing this assumption ensures that whenever a
procurement mechanism involving an efficiency wage is optimal, it is the uniquely optimal mechanism.

8If the firm uses the input to generate revenue R(Q), where R is concave and increasing for Q sufficiently
small, then the firm’s willingness to pay for the Q-th unit of input is given by V (Q) = R′(Q). The firm
could be a monopoly on the output market with a technology that transforms one unit of input into one
unit of output or a price-taking firm, in which case the concavity is derived from a production function that
exhibits decreasing marginal products in the input.

9The assumption that W is continuously differentiable is made purely for expositional convenience.
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procures a positive quantity at wi.

In short, the setting we consider makes two important departures from an otherwise

completely standard monopsony pricing problem. First, we do not restrict the monopsony

to setting the market-clearing wage w = W (Q) when it procures the quantity Q. Second,

we do not assume that the cost of procurement function C is convex. As we shall see,

these assumptions go hand-in-hand: It is without loss of generality to restrict attention to

market-clearing wages when the cost function C is convex. However, when the cost function

C fails to be convex, the monopsony may strictly benefit from offering an efficiency wage

and inducing involuntary unemployment.

Given the important role that non-convex cost functions play in our analysis, this may

beg the question of why such functions might arise in practice. In Section 6.4 we show

that non-convexities arise naturally when workers face a fixed cost of moving, changing

occupation or participating in the labor market. The assumption that a monopsony faces a

convex procurement cost is analogous to the assumption that a monopoly faces a concave

revenue function. As discussed in Loertscher and Muir (2021a), while this assumption is

widely maintained in both theoretical and empirical work in Industrial Organization it is

frequently rejected when tested empirically. However, more fundamentally, there is simply

no theoretical reason for why convex cost functions should arise in the first place.

3 Optimal procurement mechanism

We begin by introducing a function that will play a central role in our analysis: the convex-

ification C of the cost function C, which is the largest convex function that is weakly less

than C at every point Q ∈ [0, 1]. If C is a convex function then we have C = C. If C fails to

be convex then its convexification is characterized by a countable setM and a set of disjoint

open intervals {(Q1(m), Q2(m))}m∈M such that

C(Q) =

C(Q1(m)) + (Q−Q1(m))(C(Q2(m))−C(Q1(m)))
Q2(m)−Q1(m)

, ∃m ∈M s.t. Q ∈ (Q1(m), Q2(m))

C(Q), Q /∈
⋃
m∈M(Q1(m), Q2(m)).

Moreover, since C is continuously differentiable, for each m ∈M, Q1(m) and Q2(m) satisfy

the first-order condition

C ′(Q1(m)) =
C(Q2(m))− C(Q1(m))

Q2(m)−Q1(m)
= C ′(Q2(m)). (1)
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Observe that on each interval (Q1(m), Q2(m)), C is a linear function given by a convex

combination of C(Q1(m)) and C(Q2(m)) that exhibits constant marginal cost. In particular,

if Q ∈ (Q1(m), Q2(m)) for some m ∈M, then C(Q) can equivalently be written

C(Q) = (1− αm(Q))C(Q1(m)) + αm(Q)C(Q2(m)),

where αm(Q) := Q−Q1(m)
Q2(m)−Q1(m)

. If |M| > 1, then without loss of generality we can index the

intervals (Q1(m), Q2(m)) in increasing order so that, for all m ≥ 2, we have Q2(m − 1) <

Q1(m). Note that since C is increasing, so too is C, and since W is strictly increasing, we

must have Q1(1) > 0.10

For the monopsony problem with a fixed marginal benefit function V , the focus on the

case where the function C fails to be convex on a single interval is without loss of generality.11

Consequently, for the remainder of this section we assume that C exhibits only one interval

of non-convexity (i.e. |M| = 1) and simply write Q1 and Q2 in lieu of Q1(1) and Q2(1).

As an illustration, consider the following piecewise linear input supply function and its

corresponding cost function

W (Q) =

4Q, Q ∈ [0, 1/4)

Q/2 + 7/8, Q ∈ [1/4, 1]
and C(Q) =

4Q2, Q ∈ [0, 1/4)

Q2/2 + 7Q/8, Q ∈ [1/4, 1]
. (2)

This non-convex cost function is illustrated in Figure 2.12 Straightforward computations

show that

Q1 =
4 +
√

2

32
≈ 0.169 and Q2 =

1 + 2
√

2

8
≈ 0.478.

The importance of the convexification C is made clear by Lemma 1 and Proposition 1.

Lemma 1. The monopsony can procure the quantity Q at cost C(Q). Moreover, if C(Q) <

C(Q), this is achieved using an efficiency wage.

10To see this, assume to the contrary that Q1(1) = 0. Because C ′(0) = W (0) and C(Q2(1)) =
Q2(1)W (Q2(1)), the first equality in the first-order condition (1) becomes W (0) = W (Q2(1)), which contra-
dicts the assumption that W is strictly increasing.

11The reason for this sufficiency is is that the function V is decreasing, which implies a unique point of
intersection of the functions C ′ and V .

12The example in (2) is a special case of the piecewise linear specification in which, for a > b > 0 and
q ∈ (0, 1), W (Q) is given by

W (Q) =

{
aQ, Q ∈

[
0, q
)

bQ+ (a− b)q, Q ∈
[
q, 1
]
,

(3)

which gives rise to C(Q) = aQ2 for Q ∈
[
0, q
)

and C(Q) = bQ2 + Q(a − b)q for Q ∈
[
q, 1
]
. Example (2)

arises by setting a = 4, b = 1/2 and q = 1/4.
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Figure 2: C (blue), C (red), C ′ (blue) and C ′ (red) for our leading example (2).

Since the proof of this lemma is instructive, we provide it in the main body of the paper.

The first part of the lemma is evidently true if Q /∈ (Q1, Q2), since in this case C(Q) = C(Q).

So assume that Q ∈ (Q1, Q2), which implies that C(Q) < C(Q).

Suppose that the monopsony sets the wage schedule (w1, w2), where w1 < w2 and w2 =

W (Q2). The monopsony procures Q − Q1 units of labor at the wage w2 and Q1 units of

labor at the wage w1. In equilibrium, Q2 is the total mass of workers that participate in the

procurement mechanism and Q2 −Q1 is the mass of workers competing for the Q−Q1 jobs

or openings at the high wage w2. Consequently, the probability α that any given worker who

competes for these Q − Q1 jobs at the high wage is given by α = Q−Q1

Q2−Q1
. This probability

is independent of workers’ opportunity cost of working (i.e. rationing is random). The Q1

workers who in equilibrium apply for a job at the low wage w1 are hired with certainty.

To implement this procurement mechanism, the marginal worker with opportunity cost

W (Q1) must be indifferent between working with certainty at the low wage of w1 and taking

the gamble of working at the higher wage w2 with probability α.13 That is, the incentive

compatibility constraints require that

w1 −W (Q1) = α(W (Q2)−W (Q1)),

which in turn implies that

w1 = (1− α)W (Q1) + αW (Q2).

Note that w1 increases in Q because α increases in Q and W (Q1) < W (Q2).14

13If the worker with opportunity cost W (Q1) is indifferent, then all workers with lower opportunity costs
strictly prefer to work for sure at w1 over taking the gamble associated with the higher wage w2. Moreover,
all workers with higher opportunity costs strictly prefer taking the gamble to working for sure at w1.

14This mechanism is robust to the introduction of risk-averse workers in the following sense. Suppose all
workers have the same initial wealth level, which without loss of generality can be normalized to zero, and
the same, strictly concave utility function U . So a worker with opportunity cost W (Q) working at wage
w ≥ W (Q) has a utility of U(w −W (Q)) while an unemployed worker has a utility of U(0). To replicate
the equilibrium above, the participation constraint for the marginal worker still requires w2 = W (Q2)
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We are left to show that this results in the cost C(Q). To see that this is the case,

notice first that the total wage payment to the low-wage workers is Q1w1 = (1−α)C(Q1) +

αW (Q2)Q1, while the total wage bill for the high-wage workers is (Q−Q1)w2 = W (Q2)(Q−
Q1). Summing up these components and using αQ1 +Q−Q1 = αQ2 then yields

Q1w1 + (Q−Q1)w2 = (1− α)C(Q1) + αC(Q2) = C(Q)

as required. While this implementation involving a Nash equilibrium does not preclude the

possibility of other equilibria, there is also a dynamic implementation that has a dominant

strategy equilibrium: the monopsony first hires workers at wage w1 and opens Q − Q1

vacancies at w2 only after Q1 workers have been hired at w1.

Lemma 1 shows that for Q ∈ (Q1, Q2) the monopsony can do better by using a pro-

curement mechanism involving an efficiency wage instead of using a market-clearing wage.

Moreover, in such cases we have also constructed an explicit mechanism, parameterized by

the quantities (Q1, Q,Q2), that achieves a procurement cost of C(Q). We will refer to this

class of mechanisms as two-price mechanisms.15 The next proposition shows that two-price

mechanisms involving an efficiency wage are optimal in the sense that C(Q) is the minimum

cost for procuring Q in an incentive compatible and individually rational mechanism.

Proposition 1. Under incentive compatible and individually rational mechanism that min-

imizes the cost of procuring the quantity Q the cost of procurement is C(Q).

Proposition 1 can be established using the mechanism design approach and ironing pro-

cedure of Myerson (1981). Together with Lemma 1, this proposition implies it is without

loss of generality to restrict attention to two-price mechanisms involving an efficiency wage

when Q ∈ (Q1, Q2). Intuitively, the convexification C is constructed from C by replacing C ′

with the average slope of C over the interval (Q1, Q2) since∫ Q2

Q1
C ′(Q) dQ

Q2 −Q1

=
C(Q2)− C(Q1)

Q2 −Q1

.

as in the risk-neutral case. In contrast, the wage ŵ1 that makes workers with opportunity cost W (Q1)
indifferent now satisfies U(ŵ1−W (Q1)) = αU(W (Q2)−W (Q1)) + (1−α)U(0). Since U is strictly concave,
ŵ1 < w1 = (1 − α)W (Q1) + αW (Q2) follows. Moreover, the single-crossing condition is satisfied a fortiori
because U is concave. Not surprisingly, the additional benefit of insurance offered by certain employment
works in favor of the firm’s scheme. However, with risk-averse agents it is not clear whether the optimal
mechanism only involves two wages.

15Notice that the equilibrium construction does not require thatQ1 andQ2 are the quantities corresponding
to the convexification of C. Indeed, one can construct a similar equilibrium for arbitrary quantities Q̃1 and
Q̃2 satisfying Q̃1 ≤ Q ≤ Q̃2, which yields a cost of (1− α̃)C(Q̃1) + α̃C(Q̃2) with α̃ = (Q− Q̃1)/(Q̃2 − Q̃1).
Minimizing over Q̃1 and Q̃2 then yields the minimizers Q1 and Q2. By continuity, if C(Q) < C(Q), the two-
price mechanism with Q̃1 and Q̃2 sufficiently close to Q1 and Q2, respectively, yields a lower procurement
cost than hiring at a market-clearing wage.
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Therefore, C is the smallest function that can be constructed from C by taking a weighted

average, subject to the monotonicity constraint that, whenever Q̂ < Q, C ′(Q) is not given

more weight than C ′(Q̂). This is achieved by assigning all Q ∈ (Q1, Q2) equal weight. The

monotonicity constraint corresponds to the incentive compatibility constraints of the mech-

anism design problem. These constraints imply that a worker with a lower opportunity cost

of working, say ŵ = W (Q̂), cannot be employed with lower probability than a worker with

the higher opportunity cost w = W (Q). Otherwise, the worker of type ŵ could profitably

imitate the worker of type w if w were employed with higher probability.16 Since the firm

would prefer to hire workers with high types whose marginal cost is small, to hiring workers

with low types whose marginal cost is high, the best it can do is to hire them with equal

probability.

Let Q∗ be such that

V (Q∗) = C ′(Q∗).

Observe that Q∗ is unique because V is strictly decreasing by assumption and C ′ is weakly

increasing since C is a convex function.

Proposition 2. The monopsony optimally employs Q∗ workers. It optimally uses wage

dispersion and induces involuntary unemployment if and only if Q∗ ∈ (Q1, Q2).

Proposition 2 can be proven by adapting arguments from Loertscher and Muir (2021a),

which analyzes optimal monopoly pricing under a non-concave revenue function. With ho-

mogeneous goods, randomization takes the form of rationing and it provides scope for resale

if the goods are transferable. Resale harms the seller by reducing its equilibrium level of

revenue. In a labor market context, resale (or subcontracting) among workers is not an issue

if the employer has the ability to verify workers’ identities and control which individuals

actually perform a job. Using the terminology of Marx and Engels, Proposition 2 provides a

formalization of why a firm can benefit from a reserve army of the unemployed. The excess

supply induced by the efficiency wage allows it to randomize over workers and thereby to

reduce its procurement cost.

If the monopsony optimally uses an efficiency wage, then the level of involuntary un-

employment is Q2 − Q∗, and the mass of workers who are employed is Q∗. The rate of

involuntary unemployment, measured as fraction of unemployed over the total number of

individuals willing to work, is (Q2−Q∗)/(Q2−Q1). An equivalent interpretation of involun-

16The formal proof is elementary (see e.g. Börgers, 2015). Denote by t(w) the expected transfer an agent
receives when, in a direct mechanism, he reports that his type is w, and by q(w) the probability that he
has to work upon the same report. Incentive compatibility for types w and ŵ then implies t(w)− q(w)w ≥
t(ŵ)− q(ŵ)w and t(w)− q(w)ŵ ≤ t(ŵ)− q(ŵ)ŵ, respectively. Subtracting the second from the first implies
q(w)(ŵ − w) ≥ q(ŵ)(ŵ − w), which for ŵ < w holds if and only if q(w) ≤ q(ŵ).
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tary unemployment in this model is that the mass Q2 −Q1 of workers who want to work at

the efficiency wage W (Q2) are all employed but only work part-time (they have a fraction α

of a full-time job). Viewed in this way, these workers are underemployed, while the workers

who are employed at the lower wage of w1 work full-time.

4 Minimum wage effects

We are now going to show that when involuntary unemployment occurs in equilibrium with-

out a minimum wage, an appropriately chosen minimum wages increase employment and

decrease involuntary unemployment. Moreover, setting a minimum wages within a specific

range eliminates involuntary unemployment. Throughout this section, the efficient employ-

ment level that would emerge under price-taking behaviour will play an important role in

the analysis. Denoting this quantity by Qp, it satisfies the equation V (Qp) = W (Qp). Since

V is strictly decreasing and W is strictly increasing and these functions satisfy V (0) > W (0)

and V (1) < W (1), Qp exists and is unique.

We will show that, roughly speaking, the implications of introducing a minimum wage for

employment, wage dispersion, and involuntary unemployment vary depending on whether

the minimum wage lies within one of three regions. These regions are illustrated in Figure

3 (where we drop the dependence of the various quantities on the index m to simplify

notation). In the first region, which is characterized by w ∈ (w1(Q∗),W (Q̂)) and plotted

in red in Figure 3, the minimum wage is accompanied by wage dispersion and involuntary

unemployment.17 In this region, increasing the minimum wage will decrease involuntary

unemployment and wage dispersion and increase employment. The second region, plotted

in blue and characterized by w ∈ [W (Q̂),W (Qp)), has the pure effects identified by Stigler

(1946) that increasing the minimum wage increases employment without causing involuntary

unemployment. In this region, and beyond, there is no wage dispersion. The last region,

plotted in black and characterized by w ≥ W (Qp), corresponds to the textbook model

with price-taking behaviour in which increasing the minimum wage increases involuntary

unemployment and decreases employment. Figure 3 provides a rough (schematic) summary

only insofar as there may be additional regions inside the interval (W (Q∗),W (Qp)] with and

without wage dispersion, and W (Q̂) need not be strictly less than W (Qp) if Qp < Q2.

To build intuition, we first consider a minimum wage equal to the efficiency wage. We

then address the general problem. Although we do not pursue this in the present paper, the

methodology developed in this section also applies to the analysis of price caps imposed on a

17Here, w1(Q∗) is the lower wage paid in equilibrium, absent any minimum wage regulation. The definition
of the quantity Q̂ is somewhat involved and is provided in Section 4.2 (see, in particular, Footnote 21).
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Figure 3: Three regions of minimum wage effects (schematic).

monopoly seller who faces a non-concave revenue function (see Loertscher and Muir, 2021a).

4.1 Setting a minimum wage equal to the efficiency wage

We begin by considering the case in which a regulator imposes a minimum wage equal to

the efficiency wage that prevails absent regulation. This case is reasonably straightforward.

In particular, since both C ′(Q) > W (Q) and V (Q∗) = C ′(Q2(m)) hold, we know that

V (Q∗) = C ′(Q2(m)) > W (Q2(m)). Consequently, a minimum wage equal to the efficiency

wage W (Q2(m)) will increase employment in equilibrium since the firm will demand the

quantity Q∗(w) such that V (Q∗(w)) = w with w = W (Q2(m)).

Whether or not this eliminates involuntary unemployment depends on whether Qp is

larger or smaller than Q2(m). If Qp ≥ Q2(m), then we have V (Q2(m)) ≥ W (Q2(m)). This

means that a firm facing a minimum wage of w = W (Q2(m)) will optimally hire Q2(m)

workers at w, which is the market-clearing wage for the quantity Q2(m). It will not hire any

additional workers because C ′(Q) > V (Q2(m)) for Q > Q2(m). In contrast, if Qp < Q2(m),

then V (Q2(m)) < W (Q2(m)), and a minimum wage equal to W (Q2(m)) will still produce

involuntary unemployment (whereas, for a minimum wage of, say, w = W (Qp), there would

be no involuntary unemployment).

Figure 4 illustrates the effects of a minimum wage of w = W (Q2(m)) for Qp < Q2(m)

(right-hand panel) and Qp > Q2(m) (left-hand panel). Without a minimum wage, there is

involuntary unemployment and if w = W (Q2) is imposed, then the monopsony always hires

more workers. When Qp < Q2(m), we have W (Qp) < W (Q2(m)) and V (Q2) < W (Q2(m)).

Consequently, the firm hires less than Q2(m) workers and involuntary unemployment is not

eliminated because a minimum wage equal to W (Q2(m)) already induces the textbook region

from Figure 3. In contrast, if Qp ≥ Q2(m) then V (Q2(m)) ≥ W (Q2(m)) holds and the firm

optimally employs Q2(m) workers. Consequently, involuntary unemployment is eliminated

and here we end up in the Stigler region from Figure 3.

13



(a) Case 1: Qp < Q2(m)
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(b) Case 2: Q2(m) ≤ Qp
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Figure 4: Illustration of the effects associated with imposing a minimum wage of w = W (Q2)
in our leading example (2). The solid sections of the w (blue) and C ′ (red) curves indicate
the marginal cost schedule induced by optimal procurement under the minimum wage. The
quantity Qp is given the intersection of the W (grey) with V (purple) curves. In Panel (a),
Qp < Q2 and w exceeds the wage W (Qp) that would prevail under price-taking behaviour.
In Panel (b), Qp > Q2 and w eliminates involuntary unemployment.

4.2 General minimum wage effects

In this section we analyze the general effects of minimum wages on employment, wage dis-

persion, and involuntary unemployment. In order to state and prove our results, we first

need to determine the minimum cost C(Q,w) of procuring the quantity Q—and the associ-

ated optimal procurement mechanism—for a given minimum wage w. Recall that S denotes

the labor supply function. For any Q ≤ S(w), the minimum cost of procuring the quantity

Q is wQ because this cost cannot be reduced by randomizing over wages that are all at

least as high as w. Likewise, when S(w) /∈ (Q1(m), Q2(m)) for any m ∈ M (or, equiva-

lently, when w /∈ (W (Q1(m)),W (Q2(m))) for any m ∈ M) the minimum cost of procuring

the quantity Q > S(w) is simply C(Q).18 Thus, if w /∈ (W (Q1(m)),W (Q2(m))) for any

m ∈ M, the minimum cost of procuring the quantity Q is C(Q,w) = wQ if Q ∈ [0, S(w)]

and C(Q,w) = C(Q) if Q > S(w).

Matters become more complicated when S(w) ∈ (Q1(m), Q2(m)) for some m ∈ M
(or, equivalently, when w ∈ (W (Q1(m)),W (Q2(m)))). Given such an m ∈ M, recall that

αm(Q) = Q−Q1(m)
Q2(m)−Q1(m)

and let

w1(Q;m) := (1− αm(Q))W (Q1(m)) + αm(Q)W (Q2(m)) (4)

18If Q /∈ (Q1(m), Q2(m)) for any m ∈M, then the minimum cost of procuring Q absent a minimum wage
is C(Q) = W (Q)Q with W (Q) > w. Alternatively, if Q ∈ (Q1(m), Q2(m)) for some m ∈M, then the lower
wage absent wage regulation is no smaller than W (Q1(m)) ≥ w. In either case the minimum wage does not
affect the minimum cost of procurement.
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denote the lower wage that is paid under the optimal mechanism for procuring the quantity

Q, absent wage regulation. The minimum wage does not constrain the optimal wages the

monopsony uses absent wage regulation and the minimum cost of procuring Q given w is

still C(Q) if

w ≤ w1(Q;m).

Since Q1(m) < S(w) < Q2(m) and w1(Q;m) is an increasing and continuous function in Q on

[Q1(m), Q2(m)] satisfying w1(Qi(m);m) = W (Qi(m)), for any w ∈ (W (Q1(m)),W (Q2(m))),

w−1
1 (w;m) is well-defined. Consequently, we have C(Q,w) = C(Q) for any Q ≥ w−1

1 (w;m)

and Q ∈ (S(w), w−1
1 (w;m)) is the only case that requires further analysis.

We first state in general terms what the solution is. Then we discuss its key technical

properties and their economic implications. For w ∈ (W (Q1(m)),W (Q2(m))), consider the

cost function

C(Q,w) =


wQ, Q ∈ [0, S(w)]

L∗(Q,w), Q ∈
(
S(w), w−1

1 (w;m)
)

C(Q), Q ≥ w−1
1 (w;m),

(5)

where L∗(Q,w) is the value (which is written in terms of a Lagrangian in the proof of Lemma

2) of the cost-minimization problem

L∗(Q,w) := min
q1∈[0,Q], q2≥Q

{(1− α)C(q1) + αC(q2)} (6)

s.t. (1− α)W (q1) + αW (q2) ≥ w, α =
Q− q1

q2 − q1

.

Whenever Q ∈
(
S(w), w−1

1 (w;m)
)

the function C(Q,w) computes the cost-minimizing two-

wage procurement mechanism, subject to the constraint that the lower wage is no less than

the minimum wage. The following lemma shows that it is without loss of generality to

restrict attention to two-price procurement mechanisms when Q ∈
(
S(w), w−1

1 (w;m)
)
. It

also establishes a number of useful properties of the minimal cost of procurement function

and of the marginal cost function C ′(Q,w) := ∂C(Q,w)
∂Q

.

Lemma 2. The minimal cost C(Q,w) of procuring the quantity Q under the minimum wage

w ∈ (W (Q1(m)),W (Q2(m))) is given by (5). This function is convex in Q and increasing in

both Q and w. It also satisfies limQ↓S(w) C(Q,w) = wS(w), limQ↑w−1
1 (w;m) C(Q,w) = C(Q)

and, for Q ∈
(
S(w), w−1

1 (w;m)
)
,

∂C ′(Q,w)

∂Q
> 0 >

∂C ′(Q,w)

∂w
.
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We have now formally shown that for a given minimum wage w and quantity Q ∈(
S(w), w−1

1 (w;m)
)
, the optimal procurement mechanism is a two-price mechanism where

workers are hired with certainty at the minimum wage and rationed at a higher wage.

From a theoretical perspective, the fact that ∂C′(Q,w)
∂Q

> 0 holds for this region of the

parameter space (illustrated in Figure 5) is noteworthy. It implies that over the interval

Q ∈
(
S(w), w−1

1 (w;m)
)
, the minimum cost of procurement is strictly convex and the “ironed”

marginal cost function is strictly increasing. In standard irregular mechanism design prob-

lems the ironed marginal cost functions are constant on such ironing intervals. Here, the

slope of the function C(·, w) varies with Q over the interval Q ∈
(
S(w), w−1

1 (w;m)
)

because

the Lagrange multiplier (i.e. shadow price) associated with the minimum wage constraint

decreases as Q increases.

(a) Non-constant ironing
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(b) Optimal quantity Q∗(w)
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Figure 5: Panel (a) illustrates C ′(·, w) and C ′ for (2) with w = 0.95. Panel (b) shows the
optimal quantity, given by the intersection of V and C ′(·, w).

From an economic perspective, the fact that the marginal cost of procurement decreases

in w for Q ∈ (S(w), w−1
1 (w;m))—the second inequality in the display in Lemma 2—is key

for the possibility that an increase in the minimum wage increases employment. This is il-

lustrated in the right-hand panel in Figure 5. Here, the optimal quantity given the minimum

wage w, which we denote Q∗(w), is given by the point of intersection of V (Q) and C ′(Q,w).

Since C ′(Q,w) decreases in w and V (Q) decreases in Q, it follows that a local increase in the

minimum wage increases employment. The following lemma characterizes the optimal quan-

tity procured given w ∈ (W (Q1(m)),W (Q2(m))) when Q∗ ∈ (Q1(m), Q2(m)) formally and

completely. It also relates the minimum wage and the resulting optimal quantity procured

to wage dispersion and involuntary unemployment.

Lemma 3. Assume Q∗ ∈ (Q1(m), Q2(m)). Then, for w ∈ (W (Q1(m)),W (Q2(m))), the

16



optimal quantity procured, denoted Q∗(w), is such that

V (Q∗(w)) = C ′(Q∗(w), w),

provided such a quantity exists. If there is no Q such that V (Q) = C ′(Q,w), we have

Q∗(w) = S(w). For w ∈ (W (Q1(m)),W (Q2(m))), the optimal procurement mechanism given

w involves wage dispersion if and only if Q∗(w) > S(w). Moreover, provided Q∗(w) 6= S(w),

this mechanism induces involuntary unemployment.

To state more detailed comparative statics concerning these minimum wage effects, some

additional notation is required. We let γ(Q;m) denote the marginal cost of procuring the

quantity Q as the minimum wage w approaches W (Q) from below. That is,

γ(Q;m) := lim
w↑W (Q)

C ′(Q,w).

As is illustrated in Figure 5, the marginal cost function C ′(·, w) may be discontinuous at

the point Q = S(w), where the optimal procurement mechanism involves posting a market-

clearing wage of w. Given any sufficiently small ε > 0, the optimal mechanism for procuring

the quantity S(w) − ε is a single-price mechanism according to which all S(w) − ε workers

are hired at the minimum wage w, and the optimal mechanism for procuring the quantity

S(w) + ε is a two-price mechanisms in which some workers are hired with certainty at the

minimum wage w and others are rationed at an efficiency wage. This difference between

the left-hand and right-hand mechanisms explains why the marginal cost function C ′(·, w)

is not necessarily continuous at Q = S(w). When Q = S(w) (or, equivalently, w = W (Q)),

γ(Q;m) corresponds to the left-hand value of C ′(Q,w).

The significance of this function is illustrated in Figure 4 for the special case where

w = W (Q2(m)). The intersections between the functions γ and V dictate when we enter

regions such as the one illustrated in the right-hand panel of Figure 4, where wage dispersion

and involuntary unemployment are eliminated. When stating general comparative statics

concerning minimum wage effects, we have to account for these regions. To that end, we

introduce two important quantity cutoffs in the following lemma.

Lemma 4. Assuming that Q∗ ∈ (Q1(m), Q2(m)) for some m ∈ M, there exists quantity

cutoffs Q̂L(m) and Q̂H(m) given by

Q̂L(m) := min{Q : γ(Q;m) = V (Q)} and Q̂H(m) := max{Q : γ(Q;m) = V (Q)}

satisfying Q̂H(m) ≤ Qp and Q∗ < Q̂L(m) ≤ Q̂H(m) < Q2(m).

17



We are now in a position to state and prove a series of propositions which state compar-

ative statics that specify how wage dispersion, involuntary unemployment, and employment

vary as the minimum wage w ∈ (w1(Q∗;m),W (Q2(m))] increases.

Proposition 3. Suppose that Q∗ ∈ (Q1(m), Q2(m)) for some m ∈ M. Then for all w ∈
(w1(Q∗;m),W (Q̂L(m))),

(i) there is wage dispersion and involuntary unemployment; and

(ii) increasing w decreases involuntary unemployment and wage dispersion, and increases

employment.

Proposition 3 covers the first region from Figure 3. The fact that an increase in the

minimum wage at w = w1(Q∗;m) has a positive effect on employment is noteworthy in itself

because w1(Q∗;m) < W (Q∗). That is, w1(Q∗;m) is below the market-clearing wage for the

quantity Q∗. In models in which market-clearing wages are imposed, minimum wages that

are so low are typically ineffective as is a minimum wage equal to W (Q∗). The reason for

the positive quantity effect of such “small” minimum wages here is that the minimum wage

makes the firm a price-taker on the amount of workers hired at the low wage even though it

still exerts market power on the segment of workers employed at the high wage.

To gain intuition as to why wage dispersion decreases in w in this region, the following

lemma is useful. It describes some formal properties of the optimal procurement mechanism

in the region where the minimum wage constraint is binding and the monopsony optimally

uses a two-price mechanism.

Lemma 5. Given any m ∈ M, suppose that w ∈ (W (Q1(m)),W (Q2(m))) and Q ∈(
S(w), w−1

1 (w;m)
)
. For i ∈ {1, 2}, let q∗i (Q,w) denote the solution value of qi in (6). Then

q∗1(Q,w) increases in w and decreases in Q and q∗2(Q,w) decreases in w and increases in Q.

In the proof of Proposition 3 we show that an increase in w reduces wage dispersion

by both decreasing the high wage paid in equilibrium and increasing the low wage paid in

equilibrium, provided there is wage dispersion in equilibrium. That the low wage increases

in w is trivial since this wage is simply the minimum wage itself. That the high wage

W (q∗2(Q∗(w), w)) decreases in w is less obvious due to the countervailing effects that changes

in w have on q∗2(Q∗(w), w).19 However, since q∗2(Q∗(w), w) decreases in w and Q∗(w) increases

in w, this implies that involuntary unemployment decreases in w.20

19From Lemma 5, we know that q∗2(Q,w) increases in Q and decreases in w. Since Q∗(w) increases in
w showing that that q∗2(Q∗(w), w) is decreasing in w requires showing that the latter effect dominates the
former effect.

20It further implies that the unemployment rate, defined as
q∗2 (Q

∗(w),w)−Q∗(w)
q∗2 (Q

∗(w),w) = 1− Q∗(w)
q∗2 (Q

∗(w),w)) , decreases

in w because Q∗(w) increases and q∗2(Q∗(w), w) decreases.
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Proposition 4. Suppose that Q∗ ∈ (Q1(m), Q2(m)) for some m ∈ M. Then, for all w ∈
(W (Q̂H(m))),W (Q2(m))], there is no wage dispersion. Moreover,

(i) for all w ∈ [W (Q̂H(m)),min{W (Qp),W (Q2(m))}), there is no involuntary unemploy-

ment and employment increases in w; and

(ii) for all w ∈ (min{W (Qp),W (Q2(m))},W (Q2(m))], there is involuntary unemployment,

which increases in w, while employment decreases in w, provided w < V (0).

Proposition 4 applies to the second and third regions from Figure 3.21 It distinguishes

between whether the efficient quantity, which as mentioned is denoted by Qp, is smaller or

larger than Q2(m). If Qp ≤ Q2(m) then statement (a) describes the comparative statics for

the second region (the “pure Stigler” region) where there is no wage dispersion, no invol-

untary unemployment and employment is increasing in the minimum wage w.22 Moreover,

statement (b) describes the comparative statics for the third region (the “textbook” region)

where there is no wage dispersion, involuntary unemployment increases in w and employment

decreases in w.

If in addition to W being piecewise linear V is weakly concave, then Q̂L = Q̂H . Con-

sequently, Propositions 3 and 4 provide a complete characterization of the minimum wage

effects for w ∈ (w1(Q∗;m),W (Q2(m))] and there is no region in which increases in the min-

imum wage induce wage dispersion and involuntary unemployment (while still increasing

employment).23 Figure 6 illustrates these effects and the comparative statics from Propo-

sitions 3 and 4 for the piecewiese linear specification given in (2) with Q∗, Qp ∈ (Q1, Q2).

Here we can see that if there is wage dispersion in equilibrium, increasing the minimum wage

will increase employment and decrease both involuntary unemployment and wage dispersion.

Note that wage dispersion and involuntary unemployment vanish before the minimum wage

reaches W (Qp), which is typically the case since Q̂H(m) = Qp is non-generic as described

in Footnote 22. For w ∈ [W (Q̂H(m)),W (Qp)), increasing the minimum wage has the effect

of increasing employment as observed by Stigler (1946). For w > W (Qp), increasing the

minimum wage has the textbook effect of decreasing employment and increasing involuntary

unemployment.

21If there is a single point of intersection between the functions γ and V then we have Q̂L(m) = Q̂H(m) =:
Q̂(m). This case is illustrated in Figure 3.

22If W (Q) is piecewise linear of the form in (3) then, aside from knife-edge cases in which V (q) = W (q),

we have Q̂H < Qp and such a region exists. (It can be shown that for W piecewise linear, q is the only point

between Q1 and Q2 at which C ′(·, w) is continuous at Q = S(w).)
23The function γ is piecewise linear and convex when W is piecewise linear. Moreover, if V is concave then

these functions can only intersect once on (Q1(m), Q2(m)). (It might seem that V , if linear, could coincide
with the downward sloping part of γ, which would mean that there is a continuum of points of overlap; but
that is not possible because Q∗ ∈ (Q1(m), Q2(m)) implies V (Q∗) > γ(Q∗;m).)
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Figure 6: Equilibrium employment, involuntary unemployment and wages for a case with
Q∗ ∈ (Q1(m), Q2(m)) and Qp < Q2(m). All functions are constant for w ≤ w1(Q∗;m).

In Appendix B.1 we discuss the effects of minimum wages above W (Q2(m)). These

results are needed for the proof of the general theorem stated at the end of this subsection.

When Q2(m) ≥ Qp, statement (ii) from Proposition 4 still applies in this case. However,

when Qp > Q2(m), what happens past W (Q2(m)) depends on whether or not there exists

another ironing range before one reaches W (Qp).

Proposition 5. Suppose that Q∗ ∈ (Q1(m), Q2(m)) for some m ∈ M and that Q̂L(m) <

Q̂H(m). Then the set {Q : γ(Q;m) = V (Q)} contains an even number k of quantity cutoffs

Q̂j(m) that we index in increasing order so that Q̂1(m) = Q̂L(m) and Q̂k(m) = Q̂H(m).

There is no wage dispersion for intervals with an upper quantity cutoff that corresponds to

an even index and statements (i) and (ii) from Proposition 4 apply for intervals with an

upper quantity cutoff that corresponds to an odd index.

The cutoff quantities that define each of the intervals identified in Proposition 5 each

correspond to an intersection of the functions γ and V . In this region, which is not in-

cluded in Figure 3, equilibrium behaviour alternates between regions where statements (i)

and (ii) from Proposition 3 apply and where there is no wage dispersion. Consequently,

we alternate between regions where there is and where there is no wage dispersion and in-

voluntary unemployment. While employment continuously increases in the minimum wage

over these intervals, at the point where one transitions from a region without involuntary

unemployment and wage dispersion into one with involuntary unemployment, both invol-

untary unemployment and wage dispersion increase discontinuously. As the minimum wage

increases further, both involuntary unemployment then decrease continuously and become

zero at the end of the interval.

Figure 7 illustrates how a small increase in the minimum wage can lead to a discontinuous

increase in involuntary unemployment, which is then followed by a continuous decrease in

involuntary unemployment. The figure is plotted for a piecewise linear example in which Qp
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Figure 7: An example that exhibits a discontinuous increase in involuntary unemployment.

is part of the ironing range but Q∗ is not.24 This implies that V first crosses γ from below

on (Q1, Q2), which in turn implies that for w close to but above W (Q1) there is no wage

dispersion but for larger values of w there is both.

Implications for regulators We conclude this section by addressing the question of

how a regulator who observes wages and whether there is involuntary unemployment at a

given minimum wage can gauge whether marginally increasing the minimum will increase

employment.

One implication of the above analysis is that the relationship between involuntary un-

employment and minimum wages is non-monotone. If Q∗ ∈ (Q1(m), Q2(m)), there is in-

voluntary unemployment of size Q2(m)−Q∗ without a minimum wage, or equivalently, for

any minimum wage w ≤ w1(Q∗;m). For w ∈ (w1(Q∗;m),W (Q̂L(m)), involuntary unem-

ployment decreases with w and becomes 0 at w = W (Q̂L(m)). Whether it remains 0 or

becomes positive again depends on whether or not Q̂L(m) = Q̂H(m). In any case, employ-

ment is increasing in w for all w ∈ (w1(Q∗;m),W (Qp)) and involuntary unemployment is 0

at w = W (Qp). As w increases beyond W (Qp), there will be involuntary unemployment and

employment decreases.

The richness and non-monotonicity of the aforementioned effects raise the question of

whether a policymaker could assess when marginally increasing the minimum wage will de-

crease overall employment and increase or decrease involuntary unemployment. The answer

to this question is affirmative and relates to wage dispersion. If at the present minimum wage

there is involuntary unemployment and wage dispersion, increasing the minimum wage will

increase employment and decrease involuntary unemployment. Likewise, if at the present

minimum wage there is no wage dispersion and no involuntary unemployment, increasing the

24Specifically, the figure considers a parameterization such that W (Q1) = 0.67 and W (Q2) = 1.11 and
assumes that V (Q) = v with v ∈ (W (Q1)C ′(Q2)) for Q ≤ 1/4 and V (Q) = 0 otherwise. This V function
can be written as the limit of a series of strictly decreasing V functions.
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minimum wage will increase employment, provided w 6= W (Qp). If increasing the minimum

wage increases employment when there is no involuntary unemployment before the increase,

the minimum wage increase may induce involuntary unemployment. This increase will be

discontinuous. However, by the preceding argument, further increasing the minimum wage

will eventually reduce involuntary unemployment, while continuing to increase employment.

In sharp contrast, if at the current minimum wage, there is involuntary unemployment and no

wage dispersion, then increasing the minimum wage will increase involuntary unemployment

and decrease employment.

Putting all of this together yields the following theorem, which specifies the circumstances

in which a regulator can expect a local increase in the minimum wage to increase employment.

Because the theorem follows immediately from our previous observations, we do not provide

a separate proof.

Theorem 1. Whenever there is involuntary unemployment and wage dispersion at a given

minimum wage, a sufficiently small increase in the minimum wage increases employment

and decreases involuntary unemployment. If there is involuntary unemployment and no wage

dispersion at a given minimum wage, increasing the minimum wage decreases employment

and increases involuntary unemployment. Moreover, provided w 6= W (Qp), if there is no

involuntary unemployment at a given minimum wage, a sufficiently small increase in the

minimum wage increases employment.

Our analysis in this section also points to the possibility of conflicting interests among em-

ployed workers concerning the introduction of a minimum wage w ∈ (w1(Q∗;m),W (Q2(m))).

While those employed at the low wage benefit from the imposition of the minimum wage,

workers who earn the high wage in the absence of a minimum wage are harmed by a mini-

mum wage such that w < W (Q2(m)). Whenever there is wage dispersion in equilibrium, the

high wage decreases in w. For w ∈ [W (Q̂H(m)),W (Q2(m))] all workers earn the minimum

wage, and hence the equilibrium wage increases in w but is evidently less than W (Q2(m))

for w < W (Q2(m)). This effect is also illustrated in Figure 6(b), where the high wage de-

creases in w, provided there is wage dispersion and w impacts employment and involuntary

unemployment. If Qp < Q2(m), as is the case in this example, the workers who earn the

high wage absent wage regulation are still worse off with a minimum wage equal to W (Qp)

since W (Qp) < W (Q2(m)).
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5 Quantity competition

A natural question that the analysis in Sections 3 and 4 raises is to what extent the effects

identified generalize to (imperfectly) competitive environments. To address this question, we

now extend the model to allow for quantity competition between firms. We first introduce

the setup, derive the equilibrium and discuss its properties. We then analyze the effects of

minimum wages.

5.1 Setup

Suppose now that there are n firms procuring labor. We index these firms by i. For each

firm i, the marginal value for procuring the yi-th unit of labor is given by a continuously

decreasing function V (yi) satisfying V (0) > W (0) and V (0) < W (Q) for Q sufficiently large,

where we use yi to distinguish individual firms’ quantities from the quantities q1 and q2

that were introduced in the previous section. The firms compete in quantities as follows.

They simultaneously submit quantities yi to a Walrasian auctioneer as in standard oligopoly

and oligopsony models with quantity competition. However, rather than procuring the

Q :=
∑n

i=1 yi units at the market-clearing wage W (Q), which is the standard assumption

in Cournot models and leads to a procurement cost function of C, we assume that the

auctioneer can use the optimal procurement mechanism and thus procures the Q units at

minimal total cost C(Q). Firm i who employs yi units has to pay the cost yi
Q
C(Q). Modulo

replacing the cost function C with C, this is the same as in standard Cournot models since
yi
Q
C(Q) = yiW (Q) for Q /∈ (Q1(m), Q2(m)) for any m ∈ M. The efficient quantity for a

given n is denoted by Qp
n and such that

V

(
Qp
n

n

)
= W (Qp

n).

This is the quantity that would emerge if the firms were price-takers.

5.2 Equilibrium

The analysis of the previous section then extends to this model, insofar as we will have

involuntary unemployment and efficiency wages whenever Q ∈ (Q1(m), Q2(m)) for some

m ∈M.

Let Q∗n denote the aggregate quantity in a symmetric equilibrium under quantity com-
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petition. In models in which market-clearing wages are imposed, this quantity satisfies

V

(
Q∗n
n

)
= W (Q∗n) +

Q∗n
n
W ′(Q∗n), (7)

provided a symmetric equilibrium exists. Since W ′ > 0, we have Q∗n < Qp
n. That is, the

equilibrium quantity is inefficiently small.

Proposition 6. The quantity setting game has a unique equilibrium, and this equilibrium

is symmetric. The aggregate equilibrium quantity Q∗n is increasing in n. If Qp
n ≤ Q∗n, then

n > 1 and Q∗n ∈ (Q1(m), Q2(m)) for some m ∈ M. As n → ∞, we have Q∗n → Qe if

C(Qe) = C(Qe) and otherwise, we have Q∗n → Q̃, where Q̃ satisfies Qe < Q̃ < Q2(me).

As Proposition 6 shows, in our model of quantity competition the equilibrium is always

unique and symmetric. However, for n sufficiently large, Qp
n < Q∗n is possible. That is, the

equilibrium quantity can be excessively large. To develop an understanding of how such a

reversal can occur, consider the first-order condition under symmetry,

V

(
Q

n

)
=
n− 1

n

C(Q)

Q
+

1

n
C ′(Q),

whose right-hand side we denote by h(Q, n). If Q ∈ (Q1(m), Q2(m)) for some m ∈ M,

then h(Q, n) is increasing and concave in Q and for any finite n satisfies h(Qi(m), n) >

W (Qi(m)). Moreover, h(Q, n) decreases in n and satisfies h(Q, 1) > W (Q) for all Q ∈
(Q1(m), Q2(m))). In contrast, for n sufficiently large, there exists at least one interval

(an, bn) ⊂ (Q1(m), Q2(m)) such that h(Q, n) < W (Q) for all Q ∈ (an, bn), where an decreases

in n and bn increases in n.25 Consequently, if V (Q/n) = h(Q, n) for Q ∈ (an, bn), then

Q∗n ∈ (an, bn) and Qp
n < Q∗n. Figure 8 illustrates the relation between W and h(·, n) as

a function of n for our leading example given by (2). Intuitively, the first-order condition

implies that a firm’s perceived marginal cost h(Q, n) of procuring the quantity Q is a convex

combination of C ′(Q) (which is larger than W (Q)) and C(Q)/Q (which is less than W (Q) for

Q ∈ (Q1(m), Q2(m))). As n increases, the weight on C(Q)/Q increases, eventually leading

to h(Q, n) < W (Q) for some values of Q.

As n approaches infinity, Qp
n converges to the efficient (or Walrasian) quantity Qe, which

in turn satisfies V (0) = W (Qe). Consequently, the last statement of Proposition 6 distin-

guishes the cases where there is no m ∈ M such that Qe ∈ (C(Q1(m), Q2(m))) and where

25If there are multiple subintervals over which h(Q,n) < W (Q) for some n, index these by k. Then for
each k, akn is decreasing in n and bkn is increasing in n because h decreases in n. Of course, eventually two
or more of these subintervals may collapse into one, that is if bkn < ak+1

n , we may have bkn′ ≥ ak+1
n′ for some

n′ > n. But this does not invalidate the point that the set of Q ∈ (Q1(m), Q2(m)) for which h(Q,n) < W (Q)
increases in n in the set inclusion sense.

24



0.25 0.30 0.35 0.40 0.45
Q

0.8

0.9

1.0

1.1

1.2

hH×,nL

n=3 n=5 n=15 W

0.25 0.30 0.35 0.40 0.45
Q

0.8

0.9

1.0

1.1

hH×,15L W V H×�15L

Figure 8: The left-hand panel displays W and h(·, n) for n = 3, n = 5 and n = 15 for our
leading example (2). The right-hand panel focuses on the case where n = 15 and shows that
Qp
n < Q∗n for V (Q/n) = 1.2− 14Q/n.

there exists a me ∈M such that Qe ∈ (Q1(me), Q2(me))). Observe that in the latter case

C ′(Qe) = C ′(Q2(me)) > W (Q2(me)) > W (Qe).

That is, C ′(Qe) > V (0).

Proposition 6 implies that key features of the monopsony model —efficiency wages, invol-

untary unemployment—extend to quantity competition. Moreover, there is not a monotone

relationship between competition and involuntary unemployment because increasing compe-

tition can bring the equilibrium quantity into or out of an ironing interval (Q1(m), Q2(m)).

Within such an interval, competition decreases wage dispersion and involuntary unemploy-

ment and increases w1(Q∗n;m) and employment, while leaving the efficiency wage W (Q2(m))

fixed. If C(Qe) < C(Qe) holds, there is involuntary unemployment and an efficiency wage

even in the limit as n → ∞. This yields a “natural” unemployment rate associated with

perfect competition of (Q2(me)−Q̃)/Q2(me). In contrast to the usual notion of a natural un-

employment rate, this unemployment is a result of inefficient resource allocation in the form

of both random allocation and excessive economic activity (since Q̃ > Qe). In other words,

there is the possibility of inefficient perfect competition. Figures 13 and 14 in Appendix B.2

illustrate these effects for our leading example.

5.3 Minimum wage effects and competition

In models with quantity competition and market-clearing wages, setting a minimum wage

above W (Q∗n) (the market-clearing wage for the equilibrium quantity Q∗n absent wage regu-

lation) and below W (Qp
n) (the competitive wage) has a positive effect on total employment

and, accordingly, workers’ pay. To see this, recall that the competitive quantity Qp
n is such
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that V
(
Qp

n

n

)
= W (Qp

n) while the equilibrium quantity satisfies (7). Together with W ′ > 0,

this implies that Q∗n < Qp
n. Any minimum wage w ∈ (W (Q∗n),W (Qp

n)] then has a positive

employment effect. Since limn→∞Q
p
n = Qe = limn→∞Q

∗
n, the scope for this kind of quantity

and social-surplus increasing minimum wage regulation vanishes in the limit as n→∞.26

Even if the symmetric equilibrium in the model with market-clearing wages is the unique

equilibrium absent a minimum wage, a binding minimum wage w ∈ (W (Q∗n),W (Qp
n)) in-

evitably gives rise to a continuum of equilibria. To see this, denote by ri(Q−i) the best

response function of an arbitrary firm i to the aggregate quantity Q−i =
∑

j 6=i yj de-

manded by its rivals. If the best response function is given by the first-order condition

V (ri)−W (Q−i + ri)− riW ′(Q−i + ri) = 0, the equilibrium is unique and symmetric.27 De-

noting by rw,i(Q−i) the best response function given minimum wage w ∈ (W (Q∗n),W (Qp
n)),

we have

rw,i(Q−i) = max{ri(Q−i),min{S(w)−Q−i, V −1(w)}},

where the term min{S(w)−Q−i, V −1(w)} accounts for the possibility that even though the

firm could procure the quantity S(w) − Q−i at the minimum wage w it only wants to do

so if this quantity is small enough and its willingness to pay is greater than w. This means

that it will not procure more than V −1(w).

Since Q∗n < S(w) < Qp
n, we have

r′w,i (Q−i) |Q−i=
n−1
n
S(w) = −1.

This implies that in the neighborhood of the symmetric equilibrium in which each firm

chooses S(w)/n there is a also a continuum of necessarily asymmetric equilibria as illustrated

in Figure 9. Given that V is decreasing, the symmetric equilibrium is the one that maximizes

social surplus and is therefore a natural selection.

In the analysis of minimum wage effects that follows, we will maintain the focus on the

26Whether the differences W (Qp
n) −W (Q∗n) and Qp

n − Q∗n monotonically decrease in n—and the scope
for this kind of minimum wage of regulation—depends on the specifics of the model. If W and V are both
linear, then both W (Qp

n)−W (Q∗n) and Qp
n −Q∗n decrease in n.

27To see this, totally differentiate the first-order condition to obtain r′i = − W ′+riW
′′

W ′+riW ′′+W ′−V ′ , which satisfies
−1 < r′i < 0, where we drop arguments for ease of notation. The aggregate quantity Q given Q−i and i’s
best response satisfies Q = Q−i + ri(Q−i). The right-hand side is increasing in Q−i and hence invertible.
Following Anderson et al. (2020), we can thus write Q−i = fi(Q) as a function of Q, where fi is increasing.
This allows us to construct what Anderson et al. call the inclusive-best response function r̃i(Q) := ri(fi(Q)),
which gives the optimal quantity that i would choose if the aggregate quantity is Q, which includes its own

quantity. We have r̃′i =
r′i

1+r′i
< 0. The aggregate quantity Q is an equilibrium quantity if and only if∑n

i=1 r̃i(Q) = Q. Because the left-hand side decreases and the right-hand side increases in Q, it follows that
the Q satisfying this equality is unique. Moreover, because the firms are symmetric, we have r̃i = r̃j for all
i, j ∈ {1, . . . , n}. Hence, the unique equilibrium is symmetric.
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Figure 9: Standard quantity competition without a minimum wage (left panel) and with a
minimum wage of w = 0.55 (right panel). The minimum wage generates a continuum of
equilibria.The figures assumes V (yi) = 1− yi and W (Q) = Q, which implies that Q∗n = 1/2
and Qp

n = 2/3.

symmetric equilibrium and study its comparative statics.28 In analogy to the model without

a minimum wage, let

h(Q, n,w) :=
n− 1

n

C(Q,w)

Q
+

1

n
C ′(Q,w)

be the firm-level marginal cost of procurement under symmetry in the model with quantity

competition given the minimum wage w. Observe that for Q ≤ S(w), or equivalently,

w ≥ W (Q), h(Q, n,w) = w because C(Q,w) = wQ and thus C ′(Q,w) = w = C(Q,w)
Q

. For

Q > S(w), h(Q, n,w) is larger than w and strictly increasing in Q. Moreover, h(Q, n,w)

is continuous in Q everywhere except possibly at Q = S(w). It is continuous at Q = S(w)

if and only if C ′(Q,w) is continuous at that point (C(Q,w) is continuous and hence so is

C(Q,w)/Q). Finally, for w < w1(Q;m), or equivalently, Q > w−1
1 (w;m), we have

h(Q, n,w) =
n− 1

n

C(Q)

Q
+

1

n
C ′(Q) = h(Q, n)

because C(Q,w) = C(Q) and hence C ′(Q,w) = C ′(Q) for w < w1(Q;m). Hence, in the

model with quantity competition the minimum wage binds in exactly the same instances as

in the monopsony model.

28As stated in Proposition 6, without wage regulation, the symmetric equilibrium is the unique equilibrium.
Whether given a minimum wage w the symmetric equilibrium is the socially optimal equilibrium when the
equilibrium involves wage dispersion and involuntary unemployment is an open question. Of course, if the
aggregate quantity is the same in a symmetric equilibrium and an asymmetric equilibrium, social surplus is
larger in the symmetric equilibrium.
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Because V (Q/n) is decreasing in Q and because h(Q, n,w) has the same curvature prop-

erties as h(Q, n), it follows that if a Q exists that satisfies

V (Q/n) = h(Q, n,w), (8)

then Q/n is the symmetric equilibrium of the model with quantity competition given the

minimum wage w. If no such quantity exists, h(Q, n,w) must be discontinuous at Q, which

impliesQ = S(w). In this case, the symmetric equilibrium quantity is S(w)/n. Summarizing,

we have:

Lemma 6. The model with quantity-setting firms given minimum wage w has a symmetric

equilibrium. In this equilibrium, each firm chooses the quantity Q/n with Q satisfying (8) if

such a Q exists and S(w)/n otherwise.

The characterization of the symmetric equilibrium in the quantity setting game with a

minimum wage mirrors the characterization of the optimal quantity in the monopsony model

with a minimum wage. In particular, the aggregate quantity in the symmetric equilibrium is

either given by equating marginal benefits and marginal costs as in (8) just like in Lemma 3

for the optimal monopsony quantity, provided a quantity that equates these marginal benefits

and costs exist, or the quantity supplied at the minimum wage, S(w). As we will show next, a

difference arises for the comparative statics effects of increasing the minimum wage when the

the equilibrium quantity is characterized by (8) and inside some (Q1(m), Q2(m))-interval.

Recall that in the monopsony model, a marginal increase in w increases the equilibrium

quantity and decreases the equilibrium level of involuntary unemployment because C ′(Q,w)

decreases in w. In contrast, with n ≥ 2, h(Q, n,w) is a convex combination of C ′(Q,w), which

decreases in w, and C(Q,w)/Q, which increases in w because C(Q,w) increases in w. Thus,

with quantity competition, the effects of marginally increasing the minimum wage when

there is wage dispersion and involuntary unemployment will not necessarily be monotone.

This is illustrated in Figure 10 for our leading example given in (2) and a linear marginal

benefit function V for n = 5 with w = 0.9 (dotted), w = 0.95 (dashed) and w = 1 (solid).

From w = 0.9 to w = 0.95, the equilibrium quantity increases, and from w = 0.95 to w = 1,

it decreases.

However, as the following proposition shows, the marginal effect of increasing the min-

imum wage when the minimum wage is equal to the lower of the two wages absent wage

regulation, that is at w = w1(Q∗n;m), on the equilibrium employment level Q∗n(w) is positive:

Proposition 7. Suppose n < ∞ and Q∗n ∈ (Q1(m), Q2(m)) for some m ∈ M. Then at

w = w1(Q∗n;m), the marginal effect of increasing the minimum wage on the equilibrium

quantity Q∗n(w) is positive, that is, dQ∗n(w)
dw
|w=w1(Q∗n;m) > 0.
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Figure 10: Illustration of non-monotone minimum wage effects with quantity competition.

Proposition 7 shows that a minimum wage close to but above w1(Q∗n;m) increases the

equilibrium quantity if Q∗n ∈ (Q1(m), Q2(m)) for some m ∈ M. This resonates with an

insight from the monopsony model (where any marginal increase in the minimum wage

increases employment if there is wage dispersion and involuntary unemployment). However,

in the model with quantity competition increasing the equilibrium quantity is not necessarily

a move in the right direction because of the possibility of excessively high employment, that

is, Q∗n > Qp
n. More generally, the following theorem describes the effects of imposing a

binding minimum wage when Q∗n ∈ (Q1(m), Q2(m)) for some m ∈M.

In the proof of the following theorem, we show that for Q ∈ (S(w), w−1
1 (w;m)),

hγ(Q, n;m) :=
n− 1

n
W (Q) +

1

n
γ(Q;m) (9)

is the limit of h(Q, n,w) as w approaches W (Q) from below. This function is continu-

ous in Q and its role and properties are analogous to those of γ(Q;m) in the monopsony

model. Assuming Q∗n ∈ (Q1(m), Q2(m)), let Q̂H,n(m) denote the largest value of Q such that

V (Q/n) = hγ(Q, n;m).

Theorem 2. Whenever there is involuntary unemployment and wage dispersion at a given

minimum wage in the model with quantity competition, increasing the minimum wage to w =

W (Q̂H,n(m)) increases employment and eliminates involuntary unemployment. If there is

involuntary unemployment and no wage dispersion at a given minimum wage, increasing the

minimum wage decreases employment and increases involuntary unemployment. Moreover,

provided w 6= W (Qp
n), if there is no involuntary unemployment at a given minimum wage, a

sufficiently small increase in the minimum wage increases employment.

Note also that because hγ(Q, n;m) ≥ W (Q), the aggregate equilibrium quantity in the

presence of a minimum wage w = W (Q∗n) is never larger than Qp
n. Therefore, when Q∗n > Qp

n,

one effect of imposing a minimum wage equal to the market-clearing wage for the equilibrium
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quantity absent wage regulation is that it prevents excessively high levels of employment.

Since the ordering in (18) does not depend on the ordering of Q∗n and Qp
n, this also implies

that even when Q∗n > Qp
n holds absent wage regulation, total employment increases in w

for w ∈ [W (Q̂H,n(m)),W (Qp
n)] without inducing involuntary unemployment. Since we know

from Proposition 7 that increasing the minimum wage at w1(Q∗n;m) increases employment,

if Q∗n > Qp
n, then the effects of the minimum wage on total employment must be non-

monotone on [w1(Q∗n;m),W (Q̂H,n(m))]. Furthermore, if the Walrasian quantity Qe is inside

some ironing interval (i.e. if Qe ∈ (Q1(me), Q2(me)) for some me ∈ M) then there is scope

for social-surplus increasing minimum wage regulation even in the perfectly competitive

limit. Setting w = W (Q̂H,n(me)) will eliminate involuntary unemployment and we have

w → W (Qe) as n→∞ because limn→∞ Q̂H,n(m) = Qe.

6 Extensions and discussion

We now provide extensions of the model to allow for differentiated jobs and discussion of

the effects of policies that prohibit or permit wage discrimination. Then we discuss the

effects of unemployment insurance and conclude the section with the analysis of fixed costs

of migration or labor market participation.

6.1 Horizontally differentiated jobs

We first study a monopsony problem with horizontally differentiated jobs and workers.

Setup Consider a variant of the Hotelling model in which a monopsony with jobs at loca-

tions 0 and 1 has a willingness to pay of V (Q`) for the Q`-th worker employed at a given

location ` ∈ {0, 1}. As before, V (Q`) is assumed to be continuously decreasing. There is

a continuum of workers with linear transportation costs whose locations are uniformly dis-

tributed between 0 and 1 and private information of each worker. The total mass of workers

is 1. The value of the outside option of each worker is normalized to 0.29 The payoff of a

worker at location x that works at 0 for a wage of w is w − x, while this worker’s payoff of

working at 1 for a wage of w is w−(1−x). Observe that this implies that the market-clearing

wage to hire Q` workers at a given location is W (Q`) = Q`, which in turn means that the

cost of procurement at each location under market-clearing wages is C(Q`) = Q2
` . Of course,

the monopsony can hire Q` workers at ` = 0, 1 if and only if
∑

`Q` ≤ 1.

29This is without loss of generality within the domain of problems in which the value of the outside option
and the willingness to pay per worker are independent of the workers’ locations since all that matters for
these problems is the difference between the latter and the former.
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Equilibrium We first derive the minimum cost to procure a quantity Q` ∈ [0, 1/2] at a

given location, assuming that the same quantity is procured at the other location as well.

To that end, notice first that the expected transportation cost of a worker at any location

x ∈ [0, 1] who is equally like to work at location 0 and at location 1, conditional on being

employed, is 1/2. To satisfy the individual rationality constraints of workers employed under

these terms and conditions, the wage they receive has to be no less than 1/2. Consequently,

by paying a wage of 1/2 and leaving workers employed at this wage in the dark as to where

they will work, or having them multi-task by having them spend half of their time at either

location, the monopsony can procure any quantity Q` ∈ [0, 1/2] at both locations at a

marginal procurement cost of 1/2. Since the marginal cost of procuring Q` at a market-

clearing wage is C ′(Q`) = 2Q`, it follows that the monopsony can procure the quantity

Q` ∈ [0, 1/2] at each location at the cost

C(Q`) =

Q2
` , Q` ∈ [0, 1/4]

Q`/2− 1/16, Q` ∈ (1/4, 1/2]

by offering a wage of 1/2 to attract “universalists”—workers who are willing to do either

job—and a wage of 1/4 to attract “specialists,” that is workers with locations no further

away from 0 and 1 than 1/4 who will be guaranteed to do the job closest to their location.

Notice that the individual rationality constraint will bind for all workers who are employed

with locations x ∈ (1/4, 3/4). Consequently, for the marginal worker at 1/4, the incentive

compatibility constraint that this worker be indifferent between working as a specialist or as

a universalist, coincides with this worker’s individual rationality constraint.

The preceding arguments establish that this scheme with wage dispersion and random

worker-job matchings results in smaller procurement costs than market-clearing wages for

any Q` ∈ (1/4, 1/2]. Arguments along the lines of those in Balestrieri et al. (2021) and

Loertscher and Muir (2021b), who study optimal selling mechanisms on the Hotelling line,

can be used to establish that C(Q`) is indeed the minimal cost of procurement, subject to

workers’ incentive compatibility and individual rationality constraints.30

30An outline of the argument, adapted from the monopoly screening problem in Loertscher and Muir
(2021b) to the procurement setting and assuming, for now, that all workers are employed, is as follows. Let
p`(x) denote the probability that the worker who reports type x ∈ [0, 1] works at location ` ∈ {0, 1}. Incentive
compatibility implies that p1(x) − p0(x) be non-decreasing. Type x̂ is the worst-off type if p1(x̂) = p0(x̂).
Because all workers are employed, we have p0(x) + p1(x) = 1, implying p(x) ≡ p0(x) is sufficient, and
incentive compatibility becomes equivalent to p(x) being non-increasing, and x̂ is worst-off if p(x̂) = 1/2.
Given any worst-off type x̂ ∈ [0, 1], incentive compatibility yields the designer’s objective in terms of virtual
costs and values. Because its pointwise minimizer is not monotone, one needs to iron the virtual types.
(Put differently, the cost of procurement is not convex in Q0, the number of units procured at location 0.)
The pointwise minimizer given the ironed virtual type function must assign a worker in the ironing interval
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Figure 11: Illustration of Proposition 8 for V (Q`) = v −Q` with v = 7/8.

The equilibrium level of employment Q∗` at each location is given by the unique number

satisfying V (Q∗`) = C ′(Q∗`). We say that the equilibrium involves involuntary unemployment

if at the equilibrium wages there is a positive mass of workers who would be willing to work

but are not employed, and we say that it involves worker-job mismatching if in equilibrium

workers with x < 1/2 work at location 1 and workers with x > 1/2 at location 0.31 The

following proposition summarizes characteristics of the equilibrium. As it follows directly

from the preceding arguments, we omit a proof.

Proposition 8. If V (1/4) ≤ 1/2, then Q∗` ≤ 1/4 and the equilibrium involves neither

worker-job mismatchings nor involuntary unemployment. If V (1/4) > 1/2 > V (1/2), then

Q∗` ∈ (1/4, 1/2) and the equilibrium involves both worker-job mismatchings and involuntary

unemployment. If V (1/2) ≥ 1/2, then Q∗` = 1/2 and the equilibrium involves worker-job

mismatchings but no involuntary unemployment.

Figure 11 illustrates the case V (1/4) > 1/2 > V (1/2) in Proposition 8 for the linear

specification V (Q`) = v − Q` with v = 7/8. For this linear specification, V (1/4) > 1/2 >

V (1/2) is equivalent to v ∈ (3/4, 1).

If a minimum wage of w = 1/2 is imposed, the strict profitability of worker-jobs mis-

matching vanishes without any negative effects on the level of employment in equilibrium,

provided V (1/4) > 1/2.

Effects of prohibiting wage discrimination The cost minimizing procurement mech-

anism involves wage dispersion or wage discrimination whenever the quantity procured at

with equal probability to jobs at 0 and 1. Consequently, the value of the ironed virtual type function over
the ironing interval must be 0. Moreover, this also means that not employing some of these workers is also
optimal. Thus, the assumption that all workers are employed can easily be relaxed.

31If worker-job mismatching is optimal, workers who work at the high wage of 1/2 are indifferent between
working and not. Thus, those—if any—who are involuntarily unemployed are also indifferent between being
unemployed and working.
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each location is greater than 1/4. Wage discrimination is often perceived with suspicion in

both public and academic debates and has led to pressure for pay transparency in a wide

range of jurisdictions.32 We now briefly investigate the effects of prohibiting wage discrimi-

nation on the equilibrium quantity, involuntary unemployment, social surplus, workers’ total

pay and workers’ surplus.

Worker-job mismatching being optimal is equivalent to wage discrimination being opti-

mal. From Proposition 8 we know that worker-job mismatching is optimal if and only if

Q∗` > 1/4. Consequently, prohibiting or permitting wage discrimination has no effect on

equilibrium outcomes if and only if Q∗` ≤ 1/4, which is equivalent to V (1/4) ≤ 1/2. In

what follows, we therefore focus on the cases with V (1/4) > 1/2. The following effects

of prohibiting wage discrimination hold in general (i.e. without additional assumptions on

V (Q`)):

Proposition 9. Assume V (1/4) > 1/2. Then prohibiting wage discrimination: decreases

the equilibrium quantity and strictly decreases it if V (1/2) < 1; decreases the monopsony’s

profit; and increases the surplus of all workers and strictly increases the surplus of all but

the marginal workers who are employed when wage discrimination is prohibited.

Proposition 9 implies that for V (1/4) > 1/2 and V (1/2) < 1, prohibiting wage dis-

crimination decreases both the equilibrium level of employment and eliminates involuntary

unemployment. This is similar to the effects observed in Section 5 that employment and

involuntary unemployment can move in the same direction. The unambiguous effects of

prohibiting wage discrimination on the surplus of individual workers contrast with the ef-

fects of minimum wages in Section 4, where, as discussed, high wage earners are typically

harmed by minimum wages. These unambiguous effects arise here because the individual

rationality constraint binds for all workers who are randomly matched to jobs, which also

means that the individual rationality constraint binds for the marginal workers at locations

1/4 and 3/4 under wage discrimination. Hence, their net payoffs are 0. In contrast, if wage

discrimination is prohibited, the marginal workers are further away from the extremes, which

implies that all inframarginal workers enjoy larger information rents than they do with wage

discrimination.

We conclude the analysis of prohibiting wage discrimination by studying the effects of

wage discrimination on social surplus and total wage payments. Letting Qd and Qnd be the

equilibrium quantities at each location with and without wage discrimination, the change in

social surplus when wage discrimination is permitted compared to when it is not, denoted

32For a comprehensive list of recent references, see, for example, Cullen and Pakzad-Hurson (2021).
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∆SS(Qd, Qnd), is

∆SS(Qd, Qnd) =

∫ Qd

Qnd

(V (x)− 1/2)dx−
∫ Qnd

1/4

(1/2− x)dx

while the change in total wage payments, denoted ∆C(Qd, Qnd), is

∆C(Qd, Qnd) = C(Qd)− C(Qnd) =
1

2
Qd − 1

16
− (Qnd)2.

The intuition for ∆SS(Qd, Qnd) is simple. For all x ∈ [Qnd, Qd], V (x) − 1/2 is the social

benefit of the additional unit procured with wage discrimination, V (x), minus the cost of pro-

duction of 1/2, while
∫ Qnd

1/4
(1/2−x)dx is the additional cost of production on the inframarginal

units between 1/4 and Qnd that are procured with and without wage discrimination.33

Recall first that permitting wage discrimination has a positive quantity effect if and only

if Qnd ∈ (1/4, 1/2).34 Notice next that ∆SS(Qnd, Qnd) = 1
2
Qnd(Qnd−1)+ 3

32
< 0, which is to

say that a positive quantity effect is necessary, that is, Qd > Qnd, for wage discrimination to

increase social surplus, where the inequality follows from the fact that 1
2
Qnd(Qnd− 1) < − 3

32

holds for any Qnd ∈ (1/4, 1/2). Similarly, ∆C(Qnd, Qnd) = 1
2
Qnd(1 − 2Qnd) − 1

16
< 0,

meaning that without a quantity effect, wage payments decrease with wage discrimination.35

Moreover, we have

∂∆SS(Qd, Qnd)

∂Qd
= V (Qd) =

1

2
=
∂∆C(Qd, Qnd)

∂Qd
, (10)

where the second equality makes use of the first-order condition V (Qd) = 1/2. The proof

of the following proposition makes use of these insights and provides the additional steps

necessary to establish it.

Proposition 10. ∆C(Qd, Qnd) ≤ 0 implies ∆SS(Qd, Qnd) < 0.

Proposition 10 does not say whether wage discrimination can increase social surplus but

merely states that if it does increase it, it will also increase total wage payments. To see

33The expression for ∆C(Qd, Qnd) follows straightforwardly by plugging in Qd and Qnd into C and C,

respectively. To derive ∆SS(Qd, Qnd), observe that social surplus with wage discrimination is
∫ Qd

0
V (x)dx−∫ 1/4

0
xdx− (Qd − 1/2) 1

2 while social surplus without wage discrimination is
∫ Qnd

0
V (x)dx−

∫ Qnd

0
xdx. Sub-

tracting the latter from the former yields ∆SS(Qd, Qnd).
34For Qnd ≤ 1/4, permitting wage discrimination does not affect anything while for Qnd = 1/2, the only

effect of permitting wage discrimination is to decrease the procurement cost by mismatching workers to jobs.
35The function 1

2Q
nd(Qnd − 1) is convex in Qnd on [1/4, 1/2], minimized at Qnd = 1/2 and thus maximal

at Qnd = 1/4, at which point it is −3/32. To see that 1
2Q

nd(1−2Qnd)− 1
16 < 0, notice that 1

2Q
nd(1−2Qnd)

is maximized at Qnd = 1/4, at which point it equals 1/16. Since Qnd > 1/4, the inequality follows.
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that it is indeed possible for permitting wage discrimination to increase social surplus, it is

useful to consider the limiting case of a V (Q) decreasing in which case V (Q) = v for all

Q ∈ [1/4, 1/2]. For v ∈ (1/2, 1), this implies Qnd = v/2 ∈ (1/4, 1/2) and Qd = 1/2. Here,

∆SS(Qd, Qnd) = (2Qnd − 1/2)(Qd −Qnd)− 1

2
Qnd(1−Qnd) +

3

32
=

2Qnd − 3(Qnd)2

2
− 5

32
,

where the first equality uses V (Qnd) = 2Qnd and the second equality follows from substituting

Qd = 1/2 and simplifying. Expressing ∆SS(Qd, Qnd) in this way highlights the dual or

countervailing role of Qnd: If Qnd is small, the additional costs due to wage discrimination

are small and the benefits v − 1/2 are enjoyed over a large domain, namely from Qnd to

1/2, but these benefits are themselves small because Qnd being small means that v is small.

Maximizing ∆SS(1/2, Qnd) over Qnd yields Qnd = 1/3, which corresponds to v = 2/3, and

∆SS(1/2, 1/3) = 5/18 − 5/32 > 0.36 With constant willingness to pay v, one can show

that social surplus increases with wage discrimination if and only if v ∈ (1/2, 5/6), for which

Figure 12 provides an illustration.
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Figure 12: For V (Q) = v and W (Q) = Q, permitting wage discrimination decreases social
surplus when v = 7/8 (left-hand panel) and increases it when v = 2/3 (right-hand panel).

Implementation of monopsony outcome via labor market intermediary Suppose

now that the plants operated at ` ∈ {0, 1} are independently owned and operated by firms

that each have the same marginal benefit function V (Q`). To see how the implementation of

the optimal mechanism for the multi-jobs monopsony can be implemented via a third party,

suppose that in addition to the two independent firms, there is a labor market intermediary

who offers wages of 1/2 to workers who will then be randomly matched to one of the two

36If V (Q) = v − Q with v ∈ (3/4, 1), which implies Qd ∈ (1/4, 1/2), then we have ∆C(Qd, Qnd) > 0 >
∆SS(Qd, Qnd), that is, prohibiting wage discrimination decreases total wage payments and increases social
surplus.
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firms. Each firm pays a fee of 1/2 to the intermediary for each worker that is referred,

possibly up to a quantity constraint. In addition, each independent firm ` ∈ {0, 1} offers

a wage of w` = 1/4 to workers it hires directly. These wages are mutually best responses

given the intermediary’s behaviour. The intermediary makes zero profits and each of the

independent firms receives half of the multi-jobs monopsony profit. Of course, because the

scheme is strictly profitable, the intermediary could charge the firms a fixed payment for its

services. For example, with a constant willingness to pay of v per worker with v ∈ (1/2, 1),

each firm earns v2/4 without the intermediary and v/2−3/16 with the intermediary. Hence,

any fixed fee φ ∈ [0, v/2 − 3/16 − v2/4) will be acceptable for the firms since they are still

strictly better off with the intermediary and its fee than without it.

6.2 Discussion

The analysis of and discussion related to the Hotelling model above raises the questions

of whether the same or similar effects are also present in the model set up in Section 2

and analyzed in Section 3. We now address these questions, beginning with the effects of

permitting or prohibiting wage discrimination in that model.

Effects of wage discrimination with homogeneous workers Prohibiting wage dis-

crimination in the baseline model of Section 2 means that the firm will optimally procure a

quantity Q satisfying V (Q) = C ′(Q). Since C ′ is not monotone, there can be multiple local

maxima. Of course, the monopsony will choose the quantity that corresponds to the global

profit maximum, but this quantity may be larger or smaller than the quantity Q∗ that the

monopsony procures under the optimal mechanism when C(Q∗) < C(Q∗). This means that

there is, in general, no monotone quantity effect of prohibiting wage discrimination akin to

the one in Proposition 9 for the Hotelling model. Of course, just like there, keeping the

quantity fixed, allowing the monopsony to wage discriminate can only decrease total wage

payments. Even so, workers who are employed at the high wage are better off with wage

discrimination than without it, keeping the employment level fixed. Interestingly, because of

the possibility of a positive quantity effect and because, in contrast to the Hotelling model,

all but a measure zero of workers who are employed in equilibrium get a strictly positive

surplus in the baseline model, it is possible that permitting wage discrimination increases

worker surplus.37 For example, for the piecewise linear specification (2) and V (Q) = v for

all Q ≤ 1/4 and V (Q) = 0 otherwise with v ∈ (C ′(Q1), C ′(1/4)), the global maximum when

37When wage discrimination is prohibited, worker surplus with an employment level of Q is WS(Q) =

C(Q) −
∫ Q

0
W (x)dx. When wage discrimination is permitted and Q ∈ (Q1(m), Q2(m)), worker surplus is

WS(Q) = C(Q)−
∫ Q1(m)

0
W (x)dx− Q−Q1(m)

Q2(m)−Q1(m)

∫ Q2(m)

Q1(m)
W (x)dx.
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wage discrimination is prohibited is always given by a quantity smaller than 1/4. When

wage discrimination is permitted, the optimal quantity is 1/4. For v sufficiently small, that

is, less than 1.65, worker surplus is larger with wage discrimination than without it.38

Heterogeneous tasks and endogenous multi-tasking In the baseline model, we have

assumed that the firm only hires workers to perform a single homogeneous task. In Appendix

B.3 we generalize this by assuming that a monopsony firm has demand for n different tasks,

indexed by i, with a maximal demand for task i of ki. Each task i ∈ {1, . . . , n} is associated

with a weight θi > 0, so that when the firm assigns the Q-th unit of hired labor to task i, its

marginal willingness to pay for that unit of labor is V (Q)θi. Similarly, the cost of executing

task i for the Q-th lowest cost worker is given by W (Q)θi.

The problem faced by the profit-maximizing monopsony in the presence of heterogeneous

tasks is to choose the total number of workers it wants to employ and how to allocate

tasks across these workers. In Appendix B.3 we show how this problem can be solved by

applying the analysis of Loertscher and Muir (2021a). When C is convex, the monopsony

optimally assigns tasks to workers in a positive assortative fashion. In contrast, if C fails to

be convex, the monopsony may perform a generalized ironing procedure in which different

tasks are packaged into a single job and workers are asked to multi-task. This analysis

therefore provides an alternative interpretation of multi-tasking in the sense of Holmström

and Milgrom (1991). In our setting, it arises from cost minimization by a monopsony with

heterogeneous tasks that faces a non-convex procurement cost function.

6.3 Unemployment insurance and unemployment

Like minimum wages, unemployment insurance is often perceived as a cause of unemploy-

ment. We now briefly analyze unemployment insurance and show that, in contrast to min-

imum wages, unemployment insurance has the effect of exacerbating unemployment and

decreasing employment when the equilibrium without government intervention exhibits in-

voluntary unemployment. To fix ideas, we focus on the model from Section 2 involving a

monopsony employer, homogeneous workers and homogeneous tasks without minimum wages

and stipulate that any worker who is willing to work but is not employed is entitled to an

amount of unemployment insurance I > 0. (Workers who are not willing to work cannot get

the insurance payment, so in order to obtain I one has to participate in the lottery and take

38See Loertscher and Muir (2021a, Proposition 5) for a more elaborate analysis of the related problem of
facilitating or prohibiting resale on consumer surplus in a monopoly pricing problem in which the optimal
selling mechanism involves rationing. The two problems are related because resale as modelled there induces
an efficient allocation among the agents, which is what occurs here without wage discrimination.
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the “risk” of being employed.) We assume that the equilibrium without insurance involves

involuntary unemployment, that is, Q∗ ∈ (Q1(m), Q2(m)) for some m ∈ M and that in the

presence of insurance, the monopsony sets wages w1 and w2, hiring Q1 workers at w1 with

certainty and the fraction α = Q−Q1

Q2−Q1
workers willing to work at w2, with Q1, Q and Q2

satisfying Q1 ≤ Q ≤ Q2.39 We assume that workers pay the opportunity cost of working if

and only if they are actually employed.

In the following proposition, we consider a small change in the level of unemployment

insurance in a situation when the equilibrium without government intervention involves

involuntary unemployment and wage dispersion. The key impact of unemployment insurance

is that it relaxes the participation constraint for the marginal worker, allowing the monoposny

to set a lower efficiency wage w2 = W (Q2) − 1−α
α
I. Since workers with opportunity costs

between W (Q2)− 1−α
α
I and W (Q2) only participate because of the prospect of obtaining the

unemployment benefit, not all workers who are unemployed and receive the unemployment

benefit are involuntarily unemployed. Consequently, we only use the term unemployment

here, where it is understood that this does not refer to workers with opportunity costs above

W (Q2), who do not participate or obtain the unemployment insurance benefit I.

Proposition 11. Assume Q∗ ∈ (Q1(m), Q2(m)) for some m ∈M and consider a marginal

increase in I for I > 0 close to 0. Then the equilibrium level of unemployment increases in

I and the equilibrium level of employment decreases in I.

Proposition 11 resonates with the perceived wisdom that unemployment insurance can

exacerbate unemployment and adds the insight that it may also decrease total employment.

As the proof shows, the key difference to a minimum wage is that insurance increases the

optimized marginal cost of procurement whereas a minimum wage decreases it.

6.4 Efficiency wages, migration and unemployment

Efficiency wage theory is customarily associated with the so-called Five-Dollar Day intro-

duced by the Ford Motor Company in 1914; see Footnote 2. A pervasive feature of that wage

increase was that it caused workers to migrate to Detroit (see, for example, Sward, 1948,

p.53). As we now show, when workers face a fixed cost of moving or participating in the labor

market, this gives rise to a procurement cost function that is non-convex and consequently

may make the use of an efficiency wage and involuntary unemployment optimal.

Specifically, consider a model with a monopsony firm that operates in a market in which

the inverse labor supply function is WA. We assume that this function is increasing and

39It is an open question whether in the presence of unemployment insurance the focus on two-price mech-
anisms is without loss of generality.
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differential. For ease of exposition, we also assume that it is convex. This implies that

absent any migration, the cost QWA(Q) of procuring Q units of labor is convex in Q, which

in turn implies that without migration the firm optimally sets a market-clearing wage. To

model migration, we assume that there is another pool of workers whose opportunity costs

of working after migrating are described by the inverse supply function WB, which we also

assume to be convex, differentiable and increasing. Each worker in this pool has the same

fixed cost k > 0 of moving. For i ∈ {A,B}, let Si(w) = W−1
i (w) and, for w > WB(0) + k,

let SAB(w) = SA(w) + SB(w− k) denote the supply function that the firm faces. Moreover,

for Q > SA(WB(0) + k) =: Q̌, we let WAB(Q) = S−1
AB(Q). Then the inverse labor supply

function the firm faces is W (Q) = WA(Q) for Q ≤ Q̌ and W (Q) = WAB(Q) for Q > Q̌,

yielding the cost of procurement function C(Q) = W (Q)Q that accounts for migration.40

The key implication of this is that C(Q) is not convex. As shown in Appendix A.14, we have

lim
Q↑Q̌

C ′(Q) > lim
Q↓Q̌

C ′(Q), (11)

and the marginal cost of procurement decreases at Q̌. Geographical migration is only one

possible interpretation of problems involving fixed costs. One can also think of workers

moving from one industry to another or as workers joining the labor force at some fixed cost.

This perspective resonates with the prevalent view that migration is a cause of unem-

ployment in the region to which workers migrate. However, here involuntary unemployment

occurs not because of frictions such as costly search or costly wage adjustment, but rather as

a consequence of optimal pricing on the part of the firm. It also offers a novel interpretation

of the episode at the Ford Motor Company in the mid 1910s. According to this interpreta-

tion, with high enough wages, workers were willing to bear the fixed cost of moving, making

the cost of procurement non-convex in the short run and efficiency wages optimal: “the

greatest cost cutting measure” according to the dictum often attributed to Henry Ford. As

the demand for its cars and its demand for labor continued increasing, eventually it became

optimal to set market-clearing wages again. More broadly, the model with fixed costs of

migration or labor market participation and an optimal mechanism used by the firm offers

a framework in which economic expansion may be a cause of involuntary unemployment.

40For example, for WA(Q) = 4Q, WB(Q) = 4
7Q + 1

2 and k = 1/2, we obtain the specification in (2). To
see this, note that WA(Q) = 4Q and WB(Q) = 4Q/7 + 1/2 imply SA(w) = w/4 and SB(w) = 7(w − 1/2)/4
and hence using k = 1/2 for w ≥ ŵ we have SAB(w) = SA(w) +SB(w−k) = 2w−7/4. Inverting SAB yields
WAB(Q) = Q/2 + 7/8, which is the second line in (2). It remains to verify that Q̂ = 1/4, which is the case
since SA(WB(0) + k) = (1/2 + 1/2)/4 = 1/4.
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7 Conclusions

Minimum wage legislation is at the forefront of public policy debates. We provide a model

in which an appropriately chosen minimum wage increases total employment and decreases

involuntary unemployment, possibly to the point of eliminating it. The model merely as-

sumes that a monopsony firm minimizes the cost of procuring labor, subject to respecting

workers’ incentive compatibility and individual rationality constraints, and that the procure-

ment cost under a market-clearing wage is not convex at the optimal level of employment.

Extending the model to allow for quantity competition among firms, we show that there is

no monotone relationship between competition and involuntary unemployment. The latter

point is perhaps most starkly illustrated by the fact that it is possible to have involuntary

unemployment and inefficient allocation under perfect competition.

In the mechanism design approach taken in this paper, randomization in the form of ef-

ficiency wages and involuntary unemployment (or mismatching of workers and jobs) occurs

because it is optimal for the employer, and not as the result of search or other frictions. An

interesting and relevant avenue for further research would therefore be to assess the empiri-

cal magnitude of these different causes of randomization. The policy implications may differ

substantively. If these inefficiencies are caused by frictions, then reducing these frictions will

typically improve welfare. If they are by design, then external interventions designed to re-

duce the randomness in workers-job matching may prove ineffective. Another open question

for future research would be to study the policy instruments required to implement Ramsey

pricing when a monopoly’s marginal revenue or, equivalently, a monopsony’s marginal cost

of procurement is not monotone. While a price cap or floor may not suffice, its possible that

both a cap and a floor would.
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Appendix

A Proofs

A.1 Proof of Lemma 2

Proof. Part I: Proof that the minimal cost is C(Q,w) as given in (5)

The designer’s problem is to determine the cost-minimizing mechanism for procuring a fixed

quantity Q of labor, subject to the constraint that the menu of wages does not include a

wage below the minimum wage of w. We let G denote the cumulative distribution of the

opportunity cost of working for the population of workers. We denote the support of this

distribution by [c, c] ⊆ R+ and its density by g. The assumptions introduced in Section 2

ensure that the function G admits a density g and that g is strictly positive on [c, c]. We let

Γ(c) := c + G(c)
g(c)

denote the virtual cost function. The value of the worker’s outside option

of not participating in the mechanism is 0.

By the revelation principal, without loss of generality we can focus on direct mechanisms.

We let 〈x, t〉 represent an arbitrary direct mechanism, with x(c) denoting the probability

that the worker has to work when reporting to be of type c and t(c) denoting the expected

transfer the worker receives if reporting to be of type c. By the payoff equivalence theorem, it

is also Without loss of generality to assume that workers are paid a transfer upon becoming

employed. Consequently, the worker’s payoff when of type c and reporting to be of type ĉ

takes the form

t(ĉ)− x(ĉ)c.

Let U(c) := t(c) − x(c)c denote the worker’s payoff when reporting truthfully. Individual

rationality requires U(c) ≥ 0 for all c. Incentive compatibility implies that x is non-increasing

and that U ′(c) = −x(c) holds almost everywhere. For any c, ĉ ∈ [c, c] we then have

U(c) = U(ĉ) +

∫ ĉ

c

x(y)dy.

Setting this equal to t(c)− x(c)c and solving for t(c) gives

t(c) = U(ĉ) + x(c)c+

∫ ĉ

c

x(y)dy.

Observing that for c < ĉ, U(c) ≥ U(ĉ) holds because
∫ ĉ
c
x(y)dy ≥ 0, the individual rationality

constraint is satisfied for all types if and only if U(c) ≥ 0. In an optimal mechanism satisfying
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incentive compatibility and individual rationality, we must have U(c) = 0 because otherwise

the designer leaves money on the table. Expressing t(c) with ĉ = c and using U(c) = 0, we

thus obtain

t(c) = x(c)c+

∫ c

c

x(y)dy.

Note that t(c) is the expected transfer paid to workers of type c. In line with real-world

practice, we assume that the minimum wage w represents a constraint on the wage payments

made to hired workers. Since workers of type c are hired with probability x(c) and workers

are only paid a wage upon being hired, the constraints that the minimum wage w imposes

on the transfers t(c) are given by wx(c) ≤ t(c).

The designer’s procurement cost minimization problem, subject to the minimum wage

constraint parameterized by w, is thus given by

min
x

∫ c

c

t(c) dG(c)

s.t. x is non-increasing,

∫ c

c

x(c) dG(c) = Q, wx(c) ≤ t(c) for all c ∈ [c, c].

We have a continuum of constraints given by wx(c) ≤ t(c) for all c ∈ [c, c]. Under ex

post individual rationality (EIR), no worker can ever be paid a wage w that is less than its

opportunity cost. This means that for worker types with costs c > w, the constraint never

binds under EIR.

Using the fact that the constraint wx(c) ≤ t(c) is equivalent to h(c) := wx(c)− t(c) ≤ 0,

we next show that h(c) decreases in c on [c, w]. Specifically, letting c0, c1 ∈ [c, w] with c0 < c1,

we have

h(c1)− h(c0) = w(x(c1)− x(c0))− (x(c1)c1 − x(c0)c0) +

∫ c1

c0

x(y)dy

= (w − c1)(x(c1)− x(c0)) +

∫ c1

c0

x(y)dy − (c1 − c0)x(c0) ≤ 0,

where the inequality is strict if x is not constant on [c0, c1].41 This shows that it suffices to

impose the constraint associated with the minimum wage on the lowest type c = c.

We let λ denote the Lagrange multiplier corresponding to the lowest type c = c. Setting

aside the quantity constraint for now and using t(c) = x(c)c+
∫ c
c
x(y) dy, the Lagrangian is

41Since x is non-increasing, if x is not constant on [c0, c1] we have (c1 − c0)x(c0) >
∫ c1
c0
x(y)dy and

(w − c1)(x(c1)− x(c0)) ≤ 0 with strict inequality if c1 < w.
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then given by

L(x, λ) =

∫ c

c

t(c) dG(c) + λ(wx(c)− t(c))

=

∫ c

c

(
x(c)c+

∫ c

c

x(y) dy

)
dF (v) + λx(c)(w − c)− λ

∫ c

c

x(c) dc.

Using ∫ c

c

∫ c

c

g(c)x(y) dy dc =

∫ c

c

∫ y

c

g(c)x(y) dc dy =

∫ c

c

G(y)x(y) dy.

we have

L(x, λ) =

∫ c

c

Γ(c)x(c) dG(c) + λx(c)(w − c)− λ
∫ c

c

x(c) dc

=

∫ c

c

(
Γ(c)− λ

g(c)

)
x(c) dG(c) + λx(c)(w − c).

Letting H(x) = 1(x ≥ 0) denote the Heaviside step function and using the the probability

measure Gλ(c) = λ
1+λ

H(c− c) + 1
1+λ

G(c), we can rewrite the Lagrangian as

L(x, λ) = (1 + λ)

∫ c

c

[(
Γ(c)− λ

g(c)

)
1(c > c) + (w − c) 1 (c = c)

]
x(v) dGλ(c).

We can therefore derive the optimal allocation rule x∗ by ironing the function

Ψ(c, λ) =

Γ(c)− λ
g(c)

, c ∈ (c, c]

w − c, c = c

with respect to the probability measure Gλ. Note that if the function Ψ discontinuously

decreases at x = c this implies that the ironed function Ψ contains an ironing interval with

an endpoint at c = c. This ironing interval precisely corresponds to the region identified in

Section 4.2 where the optimal mechanism does not involve rationing at the minimum wage w.

Any additional ironing regions correspond to two-price mechanisms with no randomization at

the top and rationing at the minimum wage w. This shows that our restriction to two-price

mechanisms when Q ∈ (S(w), w−1
1 (w;m)) is without loss of generality as required.

Part II: Proof of the stated properties of C(Q,w)
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Since w ∈ (Q1(m), Q2(m)], m is fixed and for the remainder of this proof we omit the

dependence of Qi(m), w−1
1 (w;m) and w1(Q;m) on m and simply write Qi, Q̂ and w1(Q).

The monopsony solves

min
q1∈[0,Q),q2>Q

(1− α)C(q1) + αC(q2),

where α = Q−q1
q2−q1 , subject to the constraint (1− α)W (q1) + αW (q2) ≥ w. The corresponding

Lagrangian is

L(q1, q2, λ) = (1− α)C(q1) + αC(q2)− λ[(1− α)W (q1) + αW (q2)− w],

where λ is the Lagrange multiplier associated with the minimum wage constraint. For Q ∈
(S(w), w−1

1 (w)) the constraint will bind (i.e. hold with equality at an optimum). Otherwise,

the solution would be qi = Qi and involve a low wage of w1(Q) < w, which violates the

minimum wage constraint.

Using Cλ(Q) := W (Q)(Q− λ), the Lagrangian can equivalently be written as

L(q1, q2, λ) = (1− α)Cλ(q1) + αCλ(q2) + λw.

Using the facts that
∂α

∂q1

= − 1− α
q2 − q1

and
∂α

∂q2

= − α

q2 − q1

,

the first-order conditions with respect to q1 and q2 are those captured in

C ′λ(q1) =
Cλ(q2)− Cλ(q1)

q2 − q1

= C ′λ(q2) (12)

while the first-order condition with respect to λ is and

(1− α)W (q1) + αW (q2) = w. (13)

Letting

H(q2, q1, λ) =
Cλ(q2)− Cλ(q1)

q2 − q1

and using subscripts to denote partial derivatives, we have

H1(q2, q1, λ) =
1

q2 − q1

[C ′λ(q2)−H(q2, q1, λ)] , H2(q2, q1, λ) =
1

q2 − q1

[H(q2, q1, λ)− C ′λ(q1)] ,

H3(q2, q1, λ) =
W (q1)−W (q2)

q2 − q1

.
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Note that H3 < 0 because by assumption we have q2 > q1 and W is an increasing function.

Observe also that (12) is equivalent to

C ′λ(q1) = H(q2, q1, λ) = C ′λ(q2). (14)

Denote by q∗1(λ) and q∗2(λ) the values of q1 and q2 that satisfy (14). Evaluated at these

values, we have

H1(q∗2(λ), q∗1(λ), λ) = 0 = H2(q∗2(λ), q∗1(λ), λ).

This implies that the second partials of L(q1, q2, λ) with respect to q1 and q2, evaluated at

qi = q∗i are

∂2L(q∗1, q
∗
2, λ

∗)

∂q2
1

= (1− α)C ′′λ(q∗1) and
∂2L(q∗1, q

∗
2, λ

∗)

∂q2
2

= αC ′′λ(q∗2)

and
∂2L(q∗1, q

∗
2, λ

∗)

∂q1∂q2

= 0.

The matrix of second partials is thus(
(1− α)C ′′λ(q∗1) 0

0 αC ′′λ(q∗2)

)
.

This is positive definite if and only if (1 − α)C ′′λ(q∗1) > 0 and αC ′′λ(q∗2) > 0. Thus, for each

i ∈ {1, 2}, at the optimum we have

C ′′λ(q∗i ) > 0.

Totally differentiating C ′λ(q
∗
i ) = H(q∗2, q

∗
1, λ) with respect to λ and using H1(q∗2, q

∗
1, λ) =

0 = H2(q∗2, q
∗
1, λ) yields

dq∗i
dλ

=
H3(q∗2, q

∗
1, λ) +W ′(q∗i )

C ′′λ(q∗i )
.

Because C ′′λ(q∗i ) > 0, it follows that
dq∗i
dλ

has the same sign as

H3(q∗2, q
∗
1, λ) +W ′(q∗i ) =

W (q∗1)−W (q∗2)

q∗2 − q∗1
+W ′(q∗i ).

We next show that this expression is positive for i = 1 and negative for i = 2.

To that end, we first notice that for q∗1 < q∗2 and Q ∈ (q∗1, q
∗
2), Cλ(Q) is not convex.

That is, for all Q ∈ (q∗1, q
∗
2) we have Cλ(Q) < Cλ(Q). Otherwise, there would be no need
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to convexify Cλ(Q). We now show that this implies that W (Q) is not convex on [q∗1, q
∗
2] by

showing that convexity of W implies convexity of Cλ.

To see this, for a ∈ [0, 1] and x0 and x1 satisfying q∗1 ≤ x0 < x1 ≤ q∗2, define xa :=

ax0 + (1− a)x1. Convexity of W on [q∗1, q
∗
2] means that

W (xa) ≤ aW (x0) + (1− a)W (x1).

Now by definition of Cλ, we have Cλ(x
a) = C(xa)(xa−λ). Convexity of W then implies that

Cλ(x
a) ≤ (aW (x0) + (1− a)W (x1)) (ax0 + (1− a)x1 − λ)

= (aW (x0) + (1− a)W (x1)) (a(x0 − λ) + (1− a)(x1 − λ)

= a (aW (x0) + (1− a)W (x1)) (x0 − λ) + (1− a) (aW (x0) + (1− a)W (x1)) (x1 − λ))

= aW (x0)(x0 − λ) + (1− a)W (x1)(x1 − λ) + a(1− a)(W (x1)−W (x0))(x0 − x1)

= aCλ(x0) + (1− a)Cλ(x1) + a(1− a)(W (x1)−W (x0))(x0 − x1)

≤ aCλ(x0) + (1− a)Cλ(x1).

Here, the second inequality follows because W (x1)−W (x0) > 0 and x0−x1 < 0 (which also

implies that the inequality is strict if a ∈ (0, 1).) Thus, Cλ is convex if W is convex. Because

Cλ is not convex on [q∗1, q
∗
2], this implies that W (Q) is not convex on [q∗1, q

∗
2]. That is, for all

Q ∈ (q∗1, q
∗
2),

W (Q) > W (q∗1) + (Q− q∗1)
W (q∗2)−W (q∗1)

q∗2 − q∗1
.

Finally, because W (Q) intersects with the linear function W (q∗1) + (Q − q∗1)
W (q∗2)−W (q∗1)

q∗2−q∗1
at

Q = q∗2 from above, it follows that the slope of W at that point is smaller than
W (q∗2)−W (q∗1)

q∗2−q∗1
.

Consequently, we have W ′(q∗2) <
W (q∗2)−W (q∗1)

q∗2−q∗1
, which is equivalent to

W (q∗1)−W (q∗2)

q∗2 − q∗1
+W ′(q∗2) = H3(q∗2, q

∗
1, λ) +W ′(q∗2) < 0.

This implies
∂q∗2(λ)

dλ
< 0.

By the same token, W (Q) intersects with the linear function W (q∗1) + (Q− q∗1)
W (q∗2)−W (q∗1)

q∗2−q∗1
at

Q = q∗1 from below. This implies that W (q∗1) + (q∗2 − q∗1)W ′(q∗1) > W (q∗2), which is equivalent

to
W (q∗1)−W (q∗2)

q∗2 − q∗1
+W ′(q∗1) = H3(q∗2, q

∗
1, λ) +W ′(q∗1) > 0,

47



implying that
∂q∗1(λ)

dλ
> 0.

Once we have established the comparative static properties of the solution value λ∗(Q,w)

with respect to Q and w, the comparatives static properties of q∗i (Q,w) with respect to these

parameters will follow from the definition of q∗i (Q,w) via q∗i (Q,w) = q∗i (λ
∗(Q,w)) and the

facts
∂q∗1(λ)

dλ
> 0 >

∂q∗2(λ)

dλ
. Using (13) and totally differentiating (1−α∗)W (q∗1)+α∗W (q∗2) = w

with respect to w, where α∗ =
Q−q∗1
q∗2−q∗1

and we have dropped dependence on λ∗ for notational

ease, yields{
(1− α∗)dq

∗
1

dλ
(W ′(q∗1(λ)) +H3) + α∗

dq∗2
dλ

(W ′(q∗2(λ)) +H3)

}
dλ∗

dw
= 1.

Thus, dλ∗

dw
is positive if the term in brackets is positive, which is the case if both summands

are positive. To see that the second summand is positive, recall that
dq∗2
dλ

< 0 and W ′(q∗2(λ))+
W (q∗1)−W (q∗2)

q∗2−q∗1
< 0. To see that the first summand is positive, it suffices to recall that

dq∗1
dλ

> 0

and that W ′(q∗1) +
W (q∗1)−W (q∗2)

q∗2−q∗1
> 0. Because

dq∗i (Q,w)

dw
=

dq∗i (λ)

dλ
dλ∗(Q,w)

dw
, it follows that

dq∗1(Q,w)

dw
> 0 >

dq∗2(Q,w)

dw
.

Similarly, totally differentiating (1− α∗)W (q∗1) + α∗W (q∗2) = w with respect to Q yields{
(1− α∗)dq

∗
1

dλ
(W ′(q∗1(λ)) +H3) + α∗

dq∗2
dλ

(W ′(q∗2(λ)) +H3)

}
dλ∗

dQ
= H3.

Since the right-hand side is negative and the term in brackets on the left-hand side is, as

just shown, positive, it follows that dλ∗

dQ
< 0, implying

dq∗1(Q,w)

dQ
< 0 <

dq∗2(Q,w)

dQ
.

It is useful to note that
dλ∗

dQ
= H3

dλ∗

dw
.

We next show that λ∗(Q,w) ↓ 0 as Q ↑ w−1
1 (w), or equivalently that λ∗(Q,w) ↓ 0 as

Qw ↓ w1(Q). To see this, notice that q∗i (0) = Qi, in which case (13) is satisfied if w = w1(Q).

Hence, q∗i (Q,w)→ Qi as Q→ w−1
1 (w) (and equivalently, as w ↓ w1(Q)) follows.
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We are left to establish the stated properties of L∗(Q,w). By construction, we have

L∗(Q,w) = (1− α∗)Cλ∗(q∗1) + α∗Cλ∗(q
∗
2) + λ∗w,

where λ∗ = λ∗(Q,w), q∗i = q∗i (Q,w) and α∗ =
Q−q∗1
q∗2−q∗1

. Because λ∗ = 0 at w = w1(Q) (and

equivalently at Q = w−1
1 (w)), L∗(Q,w) = C(Q) at w = w1(Q) follows. Likewise, λ∗ = Q at

w = W (Q) implies that Cλ∗(Q) = 0 and L∗(Q,w) = Qw.

By the envelope theorem we have, for w > w1(Q) and Q < w−1
1 (w), respectively,

∂L∗(Q,w)

∂w
= λ∗ > 0 and

∂L∗(Q,w)

∂Q
= H(q∗2, q

∗
1, λ

∗) > 0,

establishing the required monotonicity properties. Finally, taking the derivative with respect

to Q once more yields

∂2L∗(Q,w)

∂w∂Q
=
∂λ∗

∂Q
= H3(q∗2, q

∗
1, λ

∗)
∂λ∗

∂w
< 0 and

∂2L∗(Q,w)

∂Q2
= H3(q∗2, q

∗
1, λ

∗)
∂λ∗

∂Q
> 0,

where the inequalities follows because ∂λ∗

∂w
> 0 > H3(q∗2, q

∗
1, λ

∗). Thus, L∗(Q,w) is convex in

Q, and increases in w decrease the marginal cost of procurement ∂L∗(Q,w)
∂Q

.

A.2 Proof of Lemma 3

Proof. Given a minimum wage w, C(Q,w) is the minimal cost of procuring the quantity

Q and this cost is convex in Q. Moreover, V (Q) is the marginal benefit of procuring the

quantity Q. Putting these facts together, Q∗(w) must then satisfy V (Q∗(w)) = C ′(Q∗(w), w),

provided that a Q such that V (Q) = C ′(Q,w) exists. When no such Q exists, the optimal

quantity procured is S(w) because limQ↓S(w) C
′(Q,w) > V (S(w)).

The optimal procurement mechanism involves wage dispersion if and only if Q∗(w) >

S(w). Otherwise, we have C(Q,w) = wQ and the optimal mechanism involves procuring

the Q workers at the minimum wage w.

Whenever there is wage dispersion, the optimal mechanism involves involuntary unem-

ployment. Similarly, when Q∗(w) < S(w), there is excess supply (and consequently involun-

tary unemployment) at the minimum wage.

A.3 Proof of Lemma 4

Proof. For w ∈ (W (Q1(m)),W (Q2(m)) and Q ∈ (S(w), w−1
1 (w;m)), ∂C(Q,w)/∂Q is con-

tinuous in Q and w. Hence, γ(Q;m) is continuous.
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Next we show that

γ(Q1(m);m) = C ′(Q2(m)) = γ(Q2(m);m).

To see this, notice that the constraint w = W (Q1(m)) does not bind at Q = Q1(m). That

γ(Q1(m);m) = C ′(Q2(m)) then follows from the definitions of Q1(m) and Q2(m). At Q =

Q2(m), we have C(Q,w) = wQ for all Q ≤ Q2(m) and C(Q,w) = C(Q) = C(Q) for Q ∈
(Q2(m), Q2(m) + δ), where δ > 0 is sufficiently small. This implies that C ′(Q,w) = C ′(Q)

for all Q ∈ (Q2(m), Q2(m) + δ) and setting w = W (Q2(m)) we see that γ(Q2(m);m) =

C ′(Q2(m)) must also hold.

From Lemma 2 we know that C ′(Q,w) is increasing in Q for all Q ∈ (S(w), w−1
1 (w;m)).

This implies that γ(Q;m) < C ′(Q2(m)) holds for Q ∈ (Q1(m), Q2(m)). Moreover, V (Q)

is continuous and decreasing, and γ(Q;m) is continuous and less than C ′(Q2(m)) for Q ∈
(Q1(m), Q2(m)) and equal to C ′(Q2(m)) for Q = Q2(m). By assumption, we also have

V (Q∗) = C ′(Q2(m)) with Q∗ ∈ (Q1(m), Q2(m)). Putting all of this together, it follows that

a smallest and a largest point of intersection of V and γ on (Q1(m), Q2(m)) exist and that the

smallest point of intersection is strictly larger than Q∗. This establishes that Q∗ < Q̂L(m).

Since C(Q,w) is convex and C(Q,w) = wQ holds for Q ≤ S(w), C ′(Q,w) ≥ w holds for

Q > S(w). This implies that γ(Q;m) ≥ W (Q), which in turn implies that Q̂H(m) ≤ Qp,

with equality if and only if γ(Qp;m) = W (Qp).

A.4 Proof of Proposition 3

Proof. By construction, for w ∈ (w1(Q∗;m),W (Q̂L(m))), the point of intersection between

V (Q) and C ′(Q,w), Q∗(w), is larger than S(w). By Lemma 3, this implies that there is

wage dispersion and involuntary unemployment, which establishes (i).

We are left to prove (ii). That the equilibrium quantity increases follows from the fact

that V (Q) is downward sloping in Q and that marginal cost of procurement is decreasing in

w stated in Lemma 2. Formally, Q∗(w) satisfies

V ′(Q∗(w)) = H(q∗2, q
∗
1, λ

∗),

where H(q∗2, q
∗
1, λ

∗) is the marginal cost of procurement derived in the proof of Lemma 2.

Totally differentiating yields

dQ∗(w)

dw
=

H3

V ′ −H3
∂λ∗

∂Q

∂λ∗

∂w
> 0,
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where the inequality holds because V ′ < 0, H3 < 0 and dλ∗

dQ
< 0 < dλ∗

dw
.

The lower of the two wages paid in equilibrium is w, which trivially increases in w. We are

going to show that the higher of the two wages decreases in w by showing that q∗2(Q∗(w), w)

decreases in w.

Using the definition of q∗2(Q,w) = q∗2(λ∗(Q,w)) and totally differentiation q∗2(λ∗(Q∗(w,w))

with respect to w yields

dq∗2(λ∗(Q∗(w), w))

dw
=
∂q∗2
∂λ

[
∂λ∗

∂Q

∂Q∗(w)

∂w
+
∂λ∗

∂w

]
=
∂q∗2
∂λ

∂λ∗

∂w

[
H3

∂Q∗(w)

∂w
+ 1

]
.

Here, the second equality follows from ∂λ∗

∂Q
= H3

∂λ∗

∂w
. Substituting

dQ∗(w)

dw
=

H3
∂λ∗

∂w

V ′ −H3
∂λ∗

∂Q

into this last expression yields

dq∗2(λ∗(Q∗(w), w))

dw
=
∂q∗2
∂λ

∂λ∗

∂w

[
(H3)2 ∂λ∗

∂w

V ′ −H3
∂λ∗

∂Q

+ 1

]
=
∂q∗2
∂λ

∂λ∗

∂w

[
(H3)2 ∂λ∗

∂w
+ V ′ −H3

∂λ∗

∂Q

V ′ −H3
∂λ∗

∂Q

]
.

Since
∂q∗2
∂λ

< 0 < ∂λ∗

∂w
,
dq∗2(λ∗(Q∗(w),w))

dw
< 0 holds if the term in brackets is positive. To see that

this is the case, we can again substitute ∂λ∗

∂Q
= H3

∂λ∗

∂w
to obtain

dq∗2(λ∗(Q∗(w), w))

dw
=
∂q∗2
∂λ

∂λ∗

∂w

[
V ′

V ′ − (H3)2 ∂λ∗

∂w

]
.

Since V ′ < 0 and V ′ − (H3)2 ∂λ∗

∂w
< 0, we have

dq∗2(λ∗(Q∗(w), w))

dw
< 0

as desired.

That the minimum wage increase decreases involuntary unemployment is now an impli-

cation of the fact that Q∗(w) increases and q∗2 decreases in w.

A.5 Proof of Lemma 5

Proof. The statement has been established in the proof of Lemma 2.
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A.6 Proof of Proposition 4

Proof. The definition of the quantity Q̂H(m) implies that, by construction, there will be no

wage dispersion for w ∈ W (Q̂H(m),W (Q2(m)]. Consequently, all the stated effects follow

from standard monopsony pricing with market-clearing wages in the face of a minimum

wage.

A.7 Proof of Proposition 5

Proof. Over intervals with an even index, we have V (Q) < γ(Q;m), implying that there is

no wage dispersion and no involuntary unemployment. Over intervals with an odd index,

we have V (Q) > γ(Q;m), implying that there is wage dispersion and involuntary unemploy-

ment.

A.8 Proof of Proposition 6

Proof. Firm i’s first-order condition is

V (yi) =
Q− yi
Q2

C(Q) +
yi
Q
C ′(Q).

The left-hand side is decreasing in yi. The partial derivative of the right-hand side with

respect to yi is − 1
Q2 (C(Q) − QC ′(Q)), which is positive because C is convex. This implies

that for any aggregate quantity Q there is a unique yi that satisfies the first-order condition.

This yi must thus be the same for all i. Hence, any equilibrium is symmetric. Given this,

we can write the first-order condition as

V

(
Q

n

)
=
n− 1

n

C(Q)

Q
+

1

n
C ′(Q). (15)

The left-hand side is decreasing in Q. The derivative of the right-hand side with respect to

Q is

− n− 1

nQ2
(C(Q)−QC ′(Q)) +

1

n
C ′′(Q) ≥ 0. (16)

Here the inequality follows from the fact that C is convex, which in turn implies that C ′′ ≥ 0

and QC ′(Q) ≥ C(Q). Because at Q = 0, the left-hand side is larger than the right-hand

side, there is a unique Q that satisfies (15). This proves that the equilibrium is unique and

symmetric.

To see that Q∗n is increasing in n, suppose to the contrary that it is not and we have
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Q∗n ≥ Q∗n+1 for some n. This implies Q∗n
n
>

Q∗n+1

n+1
and therefore

V

(
Q∗n+1

n+ 1

)
> V

(
Q∗n
n

)
=
n− 1

n

C(Q∗n)

Q∗n
+

1

n
C ′(Q∗n)

≥ n− 1

n

C(Q∗n+1)

Q∗n+1

+
1

n
C ′(Q∗n+1)

≥ n

n+ 1

C(Q∗n+1)

Q∗n+1

+
1

n+ 1
C ′(Q∗n+1).

Here, the first weak inequality is due to (16) and the second follows from the fact that the

derivative of n−1
n

C(Q)
Q

+ 1
n
C ′(Q) with respect to n is

1

n2Q
[C(Q)−QC ′(Q)] ≤ 0,

where the inequality holds because C(Q) is convex. Since in equilibrium

V

(
Q∗n+1

n+ 1

)
=

n

n+ 1

C(Q∗n+1)

Q∗n+1

+
1

n+ 1
C ′(Q∗n+1),

we have the desired contradiction.

That Qp
n < Q∗n holds for n sufficiently small follows from the discussion after the propo-

sition by choosing n = 1 since h(Q, 1) > W (Q) for all Q ∈ (Q1(m), Q2(m)). Moreover,

Qp
n ≤ Q∗n requires Q∗n ∈ (Q1(m), Q2(m)) for some m ∈ M since otherwise h(Q, n) =

W (Q) + Q
n
W ′(Q), which implies Q∗n < Qp

n. The arguments after the proposition imply

that h(Q, n) < W (Q) for some Q ∈ (Q1(m), Q2(m)) can only occur if n is sufficiently large.

Assume now that C(Qe) = C(Qe) and let Q∞ := limn→∞Q
∗
n. Taking limits of both sides

of (15) yields

V (0) =
C(Q∞)

Q∞
. (17)

The definition of Qe then implies that V (0) = C(Q∞)
Q∞

= W (Qe) = C(Qe)
Qe . Using

d

dQ

(
C(Q)

Q

)
=
QC ′(Q)− C(Q)

Q2
≥ 0,

where the inequality holds because C is convex, we have that the solution to the equation

V (0) = C(Q∞)
Q∞

is unique. Since Qe satisfies this equation we thus have Q∞ = Qe. Hence, if

Qe /∈ ∪m∈M(Q1(m)), Q2(m)) then Qe is also the aggregate quantity in the limit as claimed.

Assume now thatQe ∈ (Q1(me)), Q2(me)) for someme ∈M. ForQ ∈ (Q1(me)), Q2(me)),

C(Q) increases linearly from C(Q1(me)) to C(Q2(me)) with a slope that is greater than V (0).
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The latter follows from our observation that C ′(Qe) > V (0), which appeared immediately

prior to the proposition statement. Because W is increasing we have

C(Q1(me))

Q1(me)
= W (Q1(me)) < W (Qe) = V (0) < W (Q2(me)) =

C(Q2(me))

Q2(me)
.

This implies there exists a unique number Q̃ ∈ (Q1(me)), Q2(me)) such that C(Q̃)

Q̃
= V (0). If

Qe ∈ (Q1(me)), Q2(me)) this is then the aggregate quantity in the limit as claimed.

We are left to show that Q̃ > Qe holds whenever Qe ∈ (Q1(me), Q2(me)). To see that

this holds, rearrange (17) to

Q∞V (0) = C(Q∞)

and recall that QeV (0) = C(Qe). Since C(Qe) > C(Qe), Q̃ = Q∞ > Qe follows.

A.9 Proof of Proposition 7

Proof. Note first that C ′(Q,w) is continuous at w = w1(Q;m) because discontinuities in

C ′(Q,w) only occur at w = W (Q). The equilibrium condition is thus

V

(
Q∗n(w)

n

)
= h(Q∗n(w), n, w) =

n− 1

n

C(Q∗n(w), w)

Q∗n(w)
+

1

n
C ′(Q∗n(w), w).

Totally differentiating with respect to w, dropping arguments and writing C ′ and C ′′ in lieu

of ∂C
∂Q

and ∂2C
∂Q2 yields[

V ′ − (n− 1)

[
Q∗nC

′ − C
(Q∗n)2

]
− C ′′

]
dQ∗n
dw

= (n− 1)
∂C

∂w

1

Q∗n
+
∂C ′

∂w
.

Since the term in brackets on the left-hand side is negative, dQ∗n
dw

has the opposite sign

of (n − 1)∂C
∂w

1
Q∗n

+ ∂C′

∂w
. From the proof of Lemma 2 , we know that ∂C

∂w
= λ∗ ≥ 0 and

∂C′

∂w
= ∂λ∗

∂Q
≤ 0, where λ∗ is the solution value of the Lagrange multiplier associated with the

minimum wage constraint. At w = w1(Q;m), we have λ∗ = 0 and ∂λ∗

∂Q
< 0. We therefore

have dQ∗n
dw
|w=w1(Q∗n;m) > 0 as required.

A.10 Proof of Theorem 2

Proof. As noted, the minimum wage only binds if Q ∈ (S(w), w−1
1 (w;m)). Fixing Q, define

hγ(Q, n;m) := lim
w↑W (Q)

h(Q, n,w).
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Since C(Q,w) is continuous, it satisfies C(Q,W (Q)) = W (Q)Q. Hence, limw↑W (Q)
C(Q,w)
Q

=

W (Q). From the monopsony model, we know that limw↑W (Q) C
′(Q,w) = γ(Q;m), which is

continuous in Q. We thus obtain hγ(Q, n;m) as given in (9). Since hγ(Q, n;m) is continuous,

V is continuously decreasing and Q∗n ∈ (Q1(m), Q2(m)), smallest and largest values of Q such

that

V (Q/n) = hγ(Q, n;m)

exist. We denote these values of Q by Q̂L,n(m) and Q̂H,n(m), respectively. Since V is

decreasing and hγ(Q, n;m) < C ′(Q2(m)) holds for Q ∈ (Q1(m), Q2(m)), we have

Q∗n < Q̂L,n(m) and Q̂H,n(m) ≤ Q2(m).

Moreover, since hγ(Q, n;m) > W (Q) holds unless C ′(Q,w) is continuous at w = W (Q), we

have

Q̂H,n(m) ≤ Qp
n. (18)

This last inequality is strict unless hγ(Q̂H,n(m), n;m) = W (Q̂H,n(m)). Because hγ(Q, n;w)

converges to W (Q) as n → ∞, provided Qe ∈ (Q1(m), Q2(m)) for some m ∈ M, we have

limn→∞ Q̂H,n(m) = limn→∞Q
p
n = Qe.

It follows that for w ≤ W (Q̂L,n(m)), the equilibrium given the minimum wage w involves

wage dispersion and involuntary unemployment. Moreover, for w ∈ [W (Q̂H,n(m)),W (Q2(m)],

there is no wage dispersion in equilibrium. Minimum wages w ∈ [W (Q̂H,n(m)),W (Qp
n)] cor-

respond to the pure Stigler oligopsony region, where increases in w increase equilibrium

employment without inducing involuntary unemployment.

A.11 Proof of Proposition 9

Proof. We prove the proposition statement by statement.

When wage discrimination is prohibited, the monopsony optimally procures the quantity

Qnd at each location satisfying V (Qnd) = C ′(Qnd), provided Qnd ≤ 1/2. Otherwise, we have

Qnd = 1/2. Since V (1/2) < 1 is equivalent to Qnd < 1/2 and Qd > Qnd holds whenever

V (1/4) > 1/4 and V (1/2) < 1, the statement follows.

That the monopsony’s profit decreases when wage discrimination is prohibited follows

simply because, for V (1/4) > 1/2, wage discrimination is strictly optimal.

With wage discrimination, only workers with x ∈ [0, 1/4) and x ∈ (3/4, 1] enjoy a positive

surplus. All other workers are indifferent between working and not working and hence have

a surplus of 0. When wage discrimination is prohibited, all workers with x ∈ [0, Qnd) and

x ∈ (1 − Qnd, 1] enjoy a positive surplus and are paid a wage of Qnd, which is larger than
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1/4 since V (1/4) > 1/2 implies that Qnd > 1/4.

A.12 Proof of Proposition 10

Proof. Note first that ∆SS(Qnd, Qnd) < ∆C(Qnd, Qnd) is equivalent to Qnd(2 − Qnd) >

5/16, which is equivalent to Qnd ∈ (1/4, 5/12). Together with the slope condition (10),

∆SS(Qnd, Qnd) < ∆C(Qnd, Qnd) implies the statement in the proposition. Consequently,

the proof is complete if we can show that, for Qnd > 5/12, ∆SS(Qd, Qnd) < 0. To see

that this is the case, notice that because V is decreasing, for all x > Qnd, we have V (x) ≤
V (Qnd) = 2Qnd, where the equality uses the first-order condition for Qnd. This implies the

first inequality in the following display

∆SS(Qd, Qnd) ≤ (2Qnd − 1/2)(Qd −Qnd)− 1

2
Qnd(1−Qnd) +

3

32

≤ (2Qnd − 1/2)(1/2−Qnd)− 1

2
Qnd(1−Qnd) +

3

32
.

The second inequality follows from the fact that the right-hand side in the first line increases

in Qd because Qnd > 1/4. Observe that

(2Qnd − 1/2)(1/2−Qnd)− 1

2
Qnd(1−Qnd) +

3

32
= − 5

32
+

2Qnd − 3(Qnd)2

2
.

Moreover, the right-hand side of this expression is decreasing for Qnd > 1/3 and negative

at Qnd = 5/12. Thus, for all Qnd ∈ (1/4, 5/12), we have ∆SS(Qnd, Qnd) < ∆C(Qnd, Qnd),

which jointly with (10) implies ∆SS(Qd, Qnd) < ∆C(Qd, Qnd), and for all Qnd ≥ 5/12, we

have ∆SS(Qd, Qnd).

A.13 Proof of Proposition 11

Proof. We drop the index m and write Qi for i = 1, 2 to denote the parameters of the ironing

interval given I, where it is understood that these depend on I.

The participation constraint for the marginal worker willing to participate, whose op-

portunity cost of working is W (Q2), then becomes α(w2 −W (Q2)) + (1 − α)I = 0. This is

equivalent to

w2 = W (Q2)− 1− α
α

I.

The incentive compatibility constraint for workers with opportunity cost W (Q1) becomes

56



w1 −W (Q1) = α(w2 −W (Q1)) + (1− α)I. Plugging in the expression for w2 yields

w1 = (1− α)W (Q1) + αW (Q2).

Notice that this last expression also arises in the model without unemployment insurance.

The firm’s cost of hiring Q workers given I, denoted CI(Q,Q1, Q2), is Q1w1 + (Q−Q1)w2.

Putting all of this together we then have that

CI(Q,Q1, Q2) = (1− α)C(Q1) + αC(Q2)− (Q2 −Q)I.

The first-order conditions that pin down the optimal mechanism parameters are then

∂CI(Q,Q1, Q2)

∂Q1

= (1− α)

[
C ′(Q1)− C(Q2)− C(Q1)

Q2 −Q1

]
= 0

∂CI(Q,Q1, Q2)

∂Q2

= α

[
C ′(Q2)− C(Q2)− C(Q1)

Q2 −Q1

]
− I = 0.

The second-order condition for Q2, evaluated at the first-order condition, is

C ′′(Q2)− 2I

Q2 −Q1

> 0.

Notice that, evaluated at the first-order conditions, we have

∂ C(Q2)−C(Q1)
Q2−Q1

∂Q1

=
−C ′(Q1) + C(Q2)−C(Q1)

Q2−Q1

Q2 −Q1

= 0

and
∂ C(Q2)−C(Q1)

Q2−Q1

∂Q2

=
C ′(Q2)− C(Q2)−C(Q1)

Q2−Q1

Q2 −Q1

=
I

α
> 0.

Totally differentiating the first-order condition for Q2 with respect to I yields dQ2/dI > 0.

The first-order condition for Q1 does not directly depend on I. Hence dQ1/dI has the same

sign as dQ1/dQ2, which is positive because C ′′(Q1) > 0 by the second-order condition (and
∂

C(Q2)−C(Q1)
Q2−Q1

∂Q2
> 0). Thus, both Q1 and Q2 increase in I.

The results stated in the proposition then follows if we can show that the equilibrium

quantity decreases in I. To see that this is indeed the case, notice that the slope of the

ironed marginal cost curve is equal to C ′(Q1), which is increasing in I because C is convex

in a neighbourhood of Q1 and Q1 is increasing in I. Thus, the marginal cost increases in I,

implying that the equilibrium quantity decreases in I. Because Q2 increases in I, this also

implies that unemployment increases in I.
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A.14 Establishing inequality (11)

Letting w̌ = WB(0) + k (which is the same as WA(Q̌)), we have

lim
Q↑Q̌

C ′(Q) = WA(Q̌) + Q̌(S ′A)−1(Q̌) > WAB(Q̌) + Q̌(S ′AB)−1(Q̌) = lim
Q↓Q̌

C ′(Q).

Here, the inequality holds because WA(Q̌) = WAB(Q̌) = w̌ and, for w ≥ w̌, SAB(w) =

SA(w) + SB(w − k). This implies that S ′AB(w) = S ′A(w) + S ′B(w − k) > S ′A(w), which in

turn implies that (S ′AB)−1(Q̌) = 1
S′AB(w̌)

< 1
S′A(ŵ)

= (S ′A)−1(Q̂). Consequently, the function C

is not convex as required.

B Supplementary material

B.1 Effects of minimum wages w > W (Q2(m))

Assuming that Q∗ ∈ (Q1(m), Q2(m)), we now briefly discuss the effects of minimum wages

above W (Q2(m)). If Q2(m) ≥ Qp then statement (ii) from Proposition 4 still holds in

this case. If Q2(m) < Qp and there is no additional ironing range between Q2(m) and Qp

(that is, if (Q2(m), Qp] ∩
⋃
m′∈M(Q1(m′), Q2(m′)) = ∅), then increasing the minimum wage

w within the range [W (Q̂H),W (Qp)) increases employment without inducing involuntary

unemployment and wage dispersion. Increasing the minimum wage beyond W (Qp) will

induce involuntary unemployment but no wage dispersion. To see this, notice that if Qp ∈
(Q1(m′), Q2(m′)) for some m′ ∈ M, then we have Q̂H(m′) ≤ Qp by the same arguments

as those underlying Lemma 4. Consequently, for any Q ≥ Q̂H(m′), which corresponds to

w ≥ W (Q̂H(m′)), there will be no wage dispersion and Q∗(w) is such that V (Q∗(w))) = w.

If Qp < Q1(m′), then no minimum wage w ∈ [W (Q1(m′)),W (Q2(m′))] will induce wage

dispersion because γ(Q;m′) > V (Q) for all Q ∈ [Q1(m′), Q2(m′)]. This follows from the facts

that (i) V (Qp) = W (Qp), (ii) V is decreasing and W is increasing, and (iii) γ(Q;m′) ≥ W (Q).

B.2 Quantity competition equilibrium

In Figures 13 and 14 the left-hand panels are plotted using V (yi) = 1.1− 8yi and the right-

hand panels are plotted using V (yi) = 1.2 − 8yi. This implies that for the left-hand panels

we have Qe = 0.45 ∈ (Q1, Q2) = (0.169, 0.478) and Q̃ = 0.4516, while for the right-hand

panels we have Qe = 0.65 > Q2.

58



20 40 60 80 100
n

0.5

0.6

0.7

0.8

0.9

1.0

1.1

w
MC

w2 w1 w
A

20 40 60 80 100
n

0.5

0.6

0.7

0.8

0.9

1.0

1.1

w
MC

w2 w1 w
A

Figure 13: Equilibrium wages as a function on n, where w1 denotes the lower equilibrium
wage, w2 denotes the higher equilibrium wage, wMC = W (Q∗n) denotes the market-clearing
wage and wA the average wage wA = (w1 + w2)/2. On the left, W (Qe) = 1.1 < 1.114 = w2

and on the right W (Qe) = 1.2 > w2.
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Figure 14: Involuntary unemployment and the unemployment rate as a function on n. On
the left, there is involuntary unemployment of size Q2 − Q̃ = 0.0269 and an unemployment
rate of 5.6% as n→∞.

B.3 Heterogeneous tasks

The problem faced by the monopsony firm in the presence of heterogeneous tasks is to

choose the total number of workers it wants to employ, how to allocate the tasks across

these workers, and how to match the executed tasks to its inverse demand function V . The

solution to this last problem is simple. Because V is downward sloping, the optimal matching

of executed tasks to its demand is positive assortative. That is, denoting by qi ≤ ki the units

of tasks i that are executed, profit is maximized by matching the best available tasks to the

highest-value segment of demand, which generates a benefit of

∫ q1

0

V (x)dx+ θ2

∫ q1+q2

q1

V (x)dx+ · · ·+ θh

∫ ∑h
i=1 qi

∑h−1
i=1 qi

V (x)dx,

59



where h ≤ n+ 1 is the least productive task procured. If C is convex, then C ′ is increasing,

which implies that the least costly way of having any collection of task (q1, . . . , qh) with

qi ≤ ki executed is in a similar positive assortative fashion (having the lowest cost workers

executing tasks 1, and so on). Provided that Kn ≥ Q∗, it is then not hard to see that the

total number of workers employed, Q∗, is given by equating marginal benefit and marginal

cost, V (Q∗) = C ′(Q∗). If Kn < Q∗, then it is optimal to employ Kn workers. In either case,

every worker executes exactly one task.

Optimal multi-tasking arises in equilibrium only if C is not convex. The optimal pro-

curement mechanism with heterogeneous tasks can be derived by applying the analysis of

Loertscher and Muir (2021a) to the procurement setting. First, without loss of generality, we

introduce an arbitrarily large mass of job of intensity θn+1 = 0, and for convenience, we set

K(0) = 0 and K(n+1) =∞. We then identify the mass of jobs to be allocated within the in-

terval [0,∞) by sorting them from most (θ1) to least (θn) intensive, so that for i ∈ {1, . . . , n}
the interval [K(i−1), K(i)] corresponds to the mass of jobs of intensity θi. Similar to the case

where C is convex, these tasks are then assigned to the mass of Q workers in a positive

assortative fashion so that the highest intensity tasks are allocated to the worker with the

lowest cost of supplying labor. However, for each ironing interval m ∈M of the function C,

the corresponding mass of tasks that fall within the interval [Q∗1(m), Q∗2(m)] are not assigned

in a positive assortative fashion and are instead randomly assigned to the corresponding

mass of workers. Alternatively, we can think of the firm as repackaging the tasks that fall

within the interval [Q∗1(m), Q∗2(m)] into a mass Q∗2(m) − Q∗1(m) of homogeneous jobs and

asking the corresponding mass of workers assigned to these jobs to multi-task. This analysis

therefore provides an alternative interpretation of multi-tasking in the sense of Holmström

and Milgrom (1991). In our setting, it arises from cost minimization by a monopsony with

heterogeneous tasks that faces a non-convex procurement cost function.

Given the optimal mechanism for procuring the Q highest-value units of labor, it only

remains to determine the precise mass of workers that are hired under the optimal mecha-

nism. However, following Loertscher and Muir (2021a), this argument proceeds in precisely

the same manner as for the case where C is convex, after we replace the cost function C

with its concavification C.
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